Charmonium, open charm and beauty production at HERA-B

PIETRO FACCIOLI, for the HERA-B Collaboration

Università di Bologna and INFN

June 14, 2006
Asilomar Conference Grounds, Pacific Grove, California
HERA-B detector and physics topics
results and comparison with previous experiments

outline

- **J/ψ production**
 - p_T and x_F distributions, A-dependence
 - **new: decay angular distributions**

- **heavier states and feeddown to J/ψ**
 - $ψ'/ψ$ and kinematics
 - fraction of $J/ψ$’s from $χ_c$
 - fraction of $J/ψ$’s from b decays

- **charm**
 - inclusive D^0, D^+, D^{*+} and ratios
 - A-dependence

first data at negative x_F

highest energy among fixed-target experiments

often unclear experimental picture, especially for p-A collisions

observation of low-$p_T/|x_F|$ effects

largest $χ_c$ statistics analyzed in hadron collisions

test production models (pQCD + initial/final state interactions in nuclei)
the HERA-B detector

large acceptance
(15-220 mrad)

high resolution

good PID
($e^\pm, \mu^\pm, \pi, K, p$) + photon reconstruction

fixed nuclear target

\[\sqrt{s} = 41.6 \text{ GeV} \]
\[A = 12 \div 184 \]

Tracking

Vertex Detector

MUON

RICH

ECAL

920 GeV/c protons

electrons

target wires
(C, Ti, W)

(top view)
physics at HERA-B

dilepton trigger: \(\sim 150 \cdot 10^6 \) events

- \(J/\psi, \chi_c, \psi' \), with \(A \)-dependence
- \(D^o \rightarrow \mu^+\mu^- \) (FCNC)
- **inclusive b production**
- \(\Upsilon, \phi, \rho/\omega \)

\[\begin{array}{c}
\text{entries (a.u.)} \\
\hline
0.4 & 0.8 & 1.2 & m_{\mu\mu} \text{ [GeV/c}^2]\hline
\text{entries (a.u.)} \\
2.5 & 3.0 & 3.5 & 4.0 & 4.5 & m_{ee} \text{ [GeV/c}^2]\hline
\text{entries (a.u.)} \\
6 & 7 & 8 & 9 & 10 & 11 & 12 & m_{\mu\mu} \text{ [GeV/c}^2]\hline
\end{array} \]

\[\begin{array}{c}
\rho/\omega & \phi & J/\psi & \gamma(1S) & \gamma(2-3S) \\
\mu^+\mu^- & e^+e^- & \psi' & \mu^+\mu^- & \\
\end{array} \]

\(\sim 210 \cdot 10^6 \) minimum bias events

- \(K_s, K^*, \Lambda, \phi, \Xi^{++} \)
- pentaquarks
- \(D^o, D^+, D^{*+}, D_s \)
- \(J/\psi \)

‘hard photon’ trigger: \(\sim 35 \cdot 10^6 \) events

- direct \(\gamma, \pi^0, \eta \)
- production with four different nuclei

\[\begin{array}{c}
\text{MinBias data, run 20478} \\
\text{HP trigger, run 20595} \\
\end{array} \]

\[\begin{array}{c}
pC \rightarrow \gamma X \\
E_T \text{ [GeV]} \\
\end{array} \]
J/ψ and ψ’ signals

full dilepton data sample (3 target materials)

\[\text{e}^+\text{e}^- \]

\[\text{μ}^+\text{μ}^- \]

\[\sim 120\,000 \text{ J/ψ} \]
\[\sim 2\,200 \text{ ψ’} \]
\[\sigma_{J/ψ} \sim 64 \text{ MeV} \]

\[\sim 170\,000 \text{ J/ψ} \]
\[\sim 3\,000 \text{ ψ’} \]
\[\sigma_{J/ψ} \sim 44 \text{ MeV} \]
J/ψ production kinematics: \(p_T \) distribution

Preliminary data (di-electron channel). Compatible results from the di-muon data, not shown here.

[Graph showing \(\frac{d\sigma}{dp_T^2} \) as a function of \(p_T \) with data points for different nuclei.]

Comparison with \(p-A \) results at similar energy (\(\sqrt{s} = 38.8 \) GeV)

Increase of \(\langle p_T \rangle \) with \(A \)
x_F distribution

Preliminary data (e^+e^-), compared with p-A results at 38.8 GeV

First data centred at negative x_F
 Models (with variants):

HERA-B preliminary
(di-muon channel, carbon+tungsten double-wire runs)
errors statistical only

Vogt: final state absorption

HERA-B preliminary
(di-muon channel, carbon+tungsten double-wire runs)
errors statistical only

Models (with variants):

HERA-B preliminary
(di-muon channel, carbon+tungsten double-wire runs)
errors statistical only

Vogt: final state absorption
decay angular distribution: polarization frames

direction of $e^+(\mu^+)$ as seen in the J/ψ rest frame

\[\theta \]

- **target direction** in the J/ψ rest frame = $(-)J/\psi$ direction in the lab frame
- **beam direction** in the J/ψ rest frame
- **J/ψ direction** in the hadron (p-n) CM frame

1) Collins-Soper ("CS")
- bisector between beam and $(-)$target directions in the J/ψ rest frame
- reformulated as helicity "HCM"

2) "BEAM"
- E615, E672-706, E771, E537, etc.

3) helicity "HCM"
- E866, NA3, etc.

Il Nuovo Cimento Vol. XXXIII, N. 2 (1964)
- Gottfried-Jackson ("GJ")

- E771, E537, etc.
- CDF, NA60, etc.

reformulated as
\[
\frac{dN}{d\varphi} \propto 1 + \frac{2\lambda_\varphi}{3 + \lambda_\theta} \cos 2\varphi
\]

example: \(\lambda_\varphi > 0\)

\[
\frac{dN}{d(\cos \theta)} \propto 1 + \lambda_\theta \cos^2 \theta
\]

example: \(\lambda_\theta < 0\)

\[
\frac{dN}{d(\cos \theta) d\varphi} \propto 1 + \boxed{\lambda_\theta \cos^2 \theta} + \boxed{\lambda_\theta \varphi \sin 2\theta \sin \varphi} + \boxed{\lambda_\varphi \sin^2 \theta \cos 2\varphi}
\]

(x axis \(\perp\) reaction plane)
λ_{φ} vs. $\langle p_T \rangle$ (GeV/c) for different experiments:

- **HB**: 41.6 GeV, p-C/Ti/W
- **NA3**: 22.9 GeV, p-Pt/p-H_2
- **E615**: 21.8 GeV, π^{\pm}-W
- **E537**: 15.4 GeV, p-Be/π-Be, p-Cu/π-Cu

The graph shows the distribution of λ_{φ} for different values of $\langle p_T \rangle$ and $\langle x_F \rangle$. The data points are color-coded for different experiments and inclusive reactions.
The "natural" polarization frame has $\lambda_{\theta\phi}$ equal to zero: in such frame the decay distribution is symmetric and is described by only two parameters.

$\lambda_{\theta\phi} \neq 0$ means that the axes of the current frame are not principal axes of symmetry for the angular distribution.

But it is always possible to define a reference frame with this property: the angular distribution can always be diagonalized to a form with $\lambda_{\theta\phi} = 0$.
\(\lambda_{\theta \phi} \) in the three frames

preliminary, \(\mu^+ \mu^- + e^+ e^- \)

- The three frames actually see the decay kinematics from different perspectives
- \(|\lambda_{\theta \phi}| \lesssim \left| \lambda_{\theta \phi} \right|, \lambda_{\theta \phi} \mid \Rightarrow \text{CS the best frame?} \)
λ_θ and the hierarchy of frames

$$\frac{dN}{d(cos\theta)} \propto 1 + \lambda_\theta \cos^2\theta$$

preliminary

HCM (arb. norm.)

BEAM (arb. norm.)

CS

λ_θ

preliminary

HCM BEAM CS

$|\lambda_\theta|$ > $|\lambda_\theta|$ > $|\lambda_\theta|$
The data are consistent (for example) with a polarization generated in the CS frame, and translated into the HCM frame. The CS frame is the best approximation of the “natural” polarization frame.

\[\lambda_\theta = -1 \cdot \exp\left[-p_{J/\psi}^{CM}/(2\text{GeV}/c)\right] \]

No hypothesis of generation in the HCM frame can reproduce the data in the CS frame.
experimental situation: CS frame

J/ψ significantly polarized at low momentum (low p_T and $|x_F|$)
\[\lambda_\theta \]

\[\langle x_F \rangle \]

\[\langle p_T \rangle \text{ (GeV/c)} \]

BEAM frame

- WA11 16.8 GeV π⁻-Be
- E672 31.1 GeV π⁻-Be
- /706 31.6 GeV p-Be
- E537 15.4 GeV p⁻-W/π⁻-W
- E771 38.8 GeV p⁻-Be
- E615 21.8 GeV π⁺⁻-W
- HB 41.6 GeV p⁻-C/Ti/W
polarization almost completely smeared out, except for p_T very close to zero
ψ'-to-J/ψ production ratio

Analysis finished. Combined results ($e^+e^- + \mu^+\mu^-$):

$$\rho_{\psi'}^{e^+e^-} = \frac{B_{\psi' \rightarrow \ell^+ \ell^-} \sigma_{\psi'}}{B_{J/\psi \rightarrow \ell^+ \ell^-} \sigma_{J/\psi}} = \begin{cases} 1.63 \pm 0.08 \% \text{(C)} \\ 1.99 \pm 0.26 \% \text{(Ti)} \\ 1.62 \pm 0.11 \% \text{(W)} \end{cases}$$

$$R_{\psi'} = \rho_{\psi'} \times \frac{B_{J/\psi \rightarrow \ell^+ \ell^-}}{B_{\psi' \rightarrow \ell^+ \ell^-}} \cdot B_{\psi' \rightarrow J/\psi^{\pi^+ \pi^-}} \cdot B_{J/\psi^{\pi^0 \pi^0}}$$

= $(7.0 \pm 0.2 \pm 0.4_{BRs})\%$

p-A results consistent within a 4% variation:

- no apparent dependence on production energy and kinematics (different x_F/y, $\cos \theta$ windows)
- slight dependence on the target nucleus: NA38/50/51 (+ E866)
ψ' kinematics

measured relative to the J/ψ distributions: $B'\sigma(\psi')/B\sigma(J/\psi)$ as a function of x_F, p_T, $\cos\theta$

HERA-B (full stat, $e^+e^-/\mu^+\mu^-$ avg.)
E789 (38.8 GeV)
E771 (38.8 GeV)
NA50 (29.1 GeV)

$\lambda_\theta(\psi') - \lambda_\theta(J/\psi) = 0.23 \pm 0.17$
\(\chi_c \) production

selection:

\[
\chi_c \rightarrow J/\psi \gamma \left\{ e^+ e^- \right. \left. \mu^+ \mu^- \right\}
\]

measurement:

- fraction of \(J/\psi \)'s from \(\chi_c \):
 \[
 R_{\chi c} = \frac{\sum \sigma(\chi_{c(i)} \rightarrow J/\psi \gamma)}{\sigma_{\text{INCL}}(J/\psi)}
 \]
- kinematical distributions
- \(A \)-dependence

from the 2000 data, with

\[
370 \pm 74 \ \chi_c \text{'s} (\mu^+ \mu^- + e^+ e^-):
R(\chi_c) = 0.32 \pm 0.06 \pm 0.04
\]

new data: 40× bigger \(\chi_c \) statistics

(the largest analyzed in a hadronic experiment)
preliminary evaluation
(2002/2003 data):

(21 ± 5)% of the produced
J/ψ’s come from χc decays
based on 1300 χc’s
reconstructed in the di-muon channel
(less than 10% of the total statistics)
$pA \rightarrow b\bar{b} \ X$

$b \rightarrow J/\psi \ Y \rightarrow e^+e^-/\mu^+\mu^- \ Y$

$$R_b = \frac{N(J/\psi \leftarrow b)}{N_{\text{TOT}}(J/\psi)} = (0.065 \pm 0.011)\%$$

- extrapolation to full x_F range
- normalization by total J/ψ cross sect.
- correction by BR of $b \rightarrow J/\psi$

$\sigma(b\bar{b}) = 14.9 \pm 2.2_{\text{stat}} \pm 2.4_{\text{syst}} \ \text{nb/nucleon}$

[Phys. Rev. D 73, 052005]

HERA-B

N. Kidonakis *et al.*

E789

E771

R. Bonciani *et al.*
indirect and direct J/ψ production

Using partial/preliminary HERA-B results:

$(21 \pm 5)\%$

$(7.0 \pm 0.4)\%$

$(0.065 \pm 0.011)\%$

\[
\sigma_{\text{DIR}}^{J/\psi} = \sigma_{\text{INCL}}^{J/\psi} \left[1 - R \left(\chi_c \rightarrow J/\psi \right) - R \left(\psi' \rightarrow J/\psi \right) - R \left(b \rightarrow J/\psi \right) - \ldots \right]
\]

\[
\sigma_{pN}^{J/\psi}[41.6 \text{ GeV}] = (663 \pm 74_{\text{stat}} \pm 46_{\text{syst}}) \text{nb/nucl}
\]

extracted from MB data

$(72 \pm 5)\%$ of the J/ψ's are produced directly

curve: NLO NRQCD fit of all data

(Maltoni et al., hep-ph/0601203)
open charm: reconstructed signals

- **$D^0 + \overline{D}^0$**
 - Preliminary
 - 194 ± 20

- **D^\pm**
 - Preliminary
 - 92 ± 11

- **$D^{*\pm}$**
 - Preliminary
 - 49 ± 10

- **$m(K\pi) - m(D^0) < 50\text{ MeV}$**
- **$m(K\pi) - m(D^0) > 50\text{ MeV}$**
D cross sections

comparison with p-p/p-A results

- **D±**
 - HERA-B prel.
 - E653
 - E743
 - E769
 - NA16
 - NA27
 \[\chi^2/5 = 0.03 \]

- **D*±**
 - HERA-B prel.
 - E769
 - NA27
 \[\chi^2/2 = 0.51 \]

- **D0 + D0**
 - HERA-B prel.
 - E653
 - E743
 - E789
 - NA16
 - NA27
 - without E789: \[\chi^2/5 = 0.8 \]
 - with E789: \[\chi^2/6 = 4.1 \]

- **D0**: unclear situation at high \(\sqrt{s} \)
 - E789 result clearly disfavoured

- **energy dependence** well described in each case by the function
 \[
 \sigma_D \propto \left[1 - 1.2 / (\sqrt{s})^{0.35} \right]^{12}
 \]
reflecting the behaviour of proton PDFs (Lourenço & Wöhri)
cross section ratios: experiments vs. isospin symmetry

isospin symmetry

\[\sigma_{\text{DIR}}(D^0) = \sigma_{\text{DIR}}(D^+) = \frac{1}{3} \sigma(D^*) \]

3 polar. states

PDG averages for \(D^{*0}, D^{*\pm} \to D^0, D^\pm \) feeddown BRs

\[\frac{\sigma_{\text{INCL}}(D^{\pm})}{\sigma_{\text{INCL}}(D^0)} = 0.326 \pm 0.003 \]

violated by a factor of \(1.87 \pm 0.25 \)

\[\frac{\sigma_{\text{INCL}}(D^{*\pm})}{\sigma_{\text{INCL}}(D^0)} = 0.497 \pm 0.001 \]

experiments

\[\text{avg. } D^{\pm}/D^0 = 0.61 \pm 0.08 \]

\[\text{avg. } D^{*\pm}/D^0 = 0.43 \pm 0.09 \]

\[\chi^2/5 = 0.30 \]

\[\chi^2/2 = 0.49 \]
A-dependence

mass spectra by target material (e.g. for D^0):

- $\alpha(D^0) = 0.92 \pm 0.08$
- $\alpha(D^\pm) = 1.02 \pm 0.09$
- $\alpha(D^{*\pm}) = 1.05 \pm 0.14$

Experimental situation ($p-A$):

- $\alpha_{AVG}(x_F \sim 0) = 1.01 \pm 0.03$

consistent with no suppression

curves: $\sigma_{pA} = \sigma_{pN} \cdot A^\alpha$
J/ψ production in p-A collisions at $\sqrt{s} = 41.6$ GeV ...

- high statistics, clean signals, two decay channels
- wide kinematical coverage
 - p_T up to 5.5 GeV/c
 - negative x_F
- A-dependence:
 - flat suppression
 down to $x_F \sim -0.35$

J/ψ decay angular distributions

- longitudinal polarization rapidly increasing in magnitude with decreasing p_T and $|x_F|$
- strong hierarchy of frames: the direction of the original interaction (CS frame) is better than the J/ψ “flight” direction (HCM) as a reference for the observation of the “true” decay distribution

open charm

- D^0, D^\pm, $D^{*\pm}$ inclusive production cross sections and ratios
- A-dependence consistent with $\alpha = 1$