Increasing pro ductivit y in High Energy Physics data
mining with a Domain Specic Visual Query
Language

Inauguraldissertation
zur Erlangung desakademistien Grades
einesDoktors der Naturwissensbaften
der Universitat Mannheim

vorgelegtvon

Licenciadoem Engenharialnformatica e de Computadores
Instituto Superior Tecnico,UniversidadeT ecnicade Lisboa
VascoMiguel Moreira do Amaral
aus Cascais,Portugal

Mannheim, 2004

Dek an: Professor Dr. Jurgen Pottho, Univ ersit at Mannheim
Referen t; Professor Dr. Guido Mo erkotte, Univ ersit at Mannheim
Korreferen t: Professor Dr. Reinhard M anner, Univ ersit at Mannheim

Tag der mundlic hen Prefung: 17. Februar 2005

Ac knowledgmen ts

I thank my mother, father, brother and Patricia for all the care, love
and moral support.

My gratitude goesalso:

To Prof. Dr. Guido Moerkotte andto Dr. SvenHelmer,for believing
in my work and for all the technical support while advisingmy thesis.

To the Pi3 departmert for the friendly atmospherethat makes a
pleasan working ervironmert.

To SimoneSeegeffor helping me with the English correctionsof my
text.

To the PortugueseGovernmenal Foundation of Scienceand Tet-
nology FCT for the Phd. sdolarship (ref. SFRH/ BD / 8918/
2002).

To Prof. Dr. Joao Carvalho project managerof the PortugueseLIP
Hera-b group, and to Prof. Dr. Antonio Amorim. Due to them and
to this project | got introduced to the HEP world and contacted
with a real running HEP experimern.

To someof my good friends that cortributed in a way or in the
other to this beautiful phaseof my life: Levi Lucio, Andrej Gorisek,
Antonio Rendas, Hugo Castelo Branco, Stewen Aplin, Lawrence
Jones,Carl-Christian, Rita Torres, Daniel Peralta.

To Sciencethe noble and beautiful Mankind's greatestinvertion!

Zusammenfassung

Diese Arbeit entwickelt die erste anwendungsspzi sche visuelle An-
fragesprabe fur Hochenergieplysik. Nach dem aktuellen Stand der Tedh-
nik ist Analysevon experimertellen Ergebnissernin der Hochenergieplysik
ein sehraufwendigerVorgang. Die Verwendung allgemeinerheherer Pro-
grammierspratien und komplexer Bibliotheken fur die Erstellung und
Wartung der Auswertungssoftvare lenkt die Wissenshatftler von denKern-
fragenihres Gebietsab. Unser Ansatz fuhrt eine neue Abstraktionsebene
in Form einer visuellen Programmiersprate ein, in der die Physiker die
gewsnstiten Ergebnissan einerihrem AnwendungsgebiehahenNotation
formulieren kennen.

Die Validierung der Hypotheseerfolgte durch die Entwicklung einer
Sprade und einesSoftware-Prototyps. Neben einerformalen Syntax wird
die Sprade durch eine translationale Semarik de niert. Die Semarik
wird dabei mittels einer Ubersetzungin einedurch spezielleGruppierung-
soperatoren erweiterte NF2-Algebra spezi ziert. Die vom Benutzer er-
stellten visuellen Anfragen werdendurch einenCompiler in Code fur eine
Zielplattform wbersetzt. Die Benutzbarkeit der Sprade wurde durch eine
Berutzerstudie validiert, deren qualitative und quartitativ e Ergebnisse
vorgestellt werden.

Abstract

We proposethe rst Domain Specic Visual Query languagefor High
Energy Physicsin order to tackle the problem of the physicist's reduced
productivity in the High Energy Physics data mining phase. This ap-
proach comesin cortrast to the current one wherethe useris distracted
from Physics by having to code his queriesusing a general purposelan-
guageand complexframeworks. Our newlanguageintroducesan abstrac-
tion layer wherethe physicistsdescrike their queriesusinga notation from
their domain of speet. We validated our approad by designingthe lan-
guageand implemerting a prototype. The languageis de ned by a formal
syrntax together with a sematics de ned translationally into a interme-
diate language,an NF2-Algebra extended by us with special grouping
operators. A visual languagecompiler generatesa target sourcecode that
dealswith the particular existing frameworks. The usability of this pro-
posedlanguageis alsoevaluated in this report by performing a study with
real users. We discussin this report quartitativ e and qualitative mea-
suremens concerningthe user's productivity, by comparing the former
traditional approad with our new one.

Table of Contents

1 Intro duction
1.1 Motivation
1.2 Objectives. e
1.3 Scienic Domainofthe Thesis
1.4 ThesisOutline

| Problem De nition

2 Context of the Work
2.1 Overview of High EnergyPhysics
2.2 TheDetector,
221 TheMachinery
2.2.2 On-line System- the Triggersand Data Acquisition

2.2.3 O-line System- Data Reconstruction
2.24 AnalysisSystem.,
2.3 Historic Perspective of the Analysis Systems
2.3.1 Unstructured Approach
2.3.2 AnalysisFrameworks
2.3.3 Object-oriented Frameworks
2.3.4 Current and Future Trends.
24 Summary ... e e e

3 The Physics Analysis Pro cess
3.1 De ning PhysicsAnalysis- Low versusHigh Level
3.2 Monte Carlo Simulation
3.3 AnalysisSchema

WWN - -

(&)

© ~N~

ii TABLE OF CONTENTS

3.4 TheQueryPatterns. 31
341 QuerySteps. e 32

3.4.2 ExampleQuery, 34

35 Summary 36

4 Problem statemen t 37
4.1 TheProblem 37
4.2 Time ConsumingQueryingProcess. 39
4.3 Motivation for the Thesis. 41
4.4 Summary e 41
Il Preliminary Concepts 43
5 Query Systems 45
5.1 Introduction to Query Systems 45
5.2 Query SystemsTaxonony 46
5.2.1 Textual QuerylLanguages 48

5.2.2 Non-Textual Query Languages. 50

5.2.3 Visual Databaselnterfaces. 58

5.2.4 Summaryof Features. 59

5.3 Building a Visual Query System. 59
5.3.1 The Visual Language. 61

532 HumanFactors 61

54 Summary e e 61

6 Domain Specic Mo deling 63
6.1 Introduction to Domain Specicity 63
6.2 ModelingStrategy L. 64
6.3 DSL EngineeringProcess. 66
6.4 Advantagesand Disadvantages. 66
6.5 DSL\Attempts" inHEP 68
6.6 Summary 69
Il Tackling the Problem 71
7 The Solution 73

7.1 ProposedApproadh 73

TABLE

OF CONTENTS i

7.2 WhyaDSVQL?. 75
7.3 ExpectedResults 75
7.3.1 SystemOverview 76
7.4 Summary e 77
8 Query Language - PHEASANT QL 79
8.1 Introduction 79
8.2 Symax e e 80
8.2.1 ConcreteversusAbstract Synax 80
8.2.2 Overviewof PHEASANT QL 80
8.2.3 PHEASANT QL Alphabet - Symbolic Notation . . 81
8.2.4 Grammar 89
8.3 Semanics 94
8.3.1 The Target Language- Intermediate Algebra Oper-
ators 95
8.3.2 LanguageDescription. 111
8.4 Summary e 137
9 Protot ype Framew ork - PHEASANT 139
9.1 GeneralOverview 139
9.1.1 RolesandUseCases. 140
9.1.2 Architecture 141
9.1.3 Tedwnology Usedfor the Implemertation 143
9.2 Userinterface- The Visual Editor 144
9.2.1 RelatedWork and DesignDecisions. 144
9.2.2 The Architecture of the Visual Editor 147
9.23 FutureWork. 151
9.3 The Generationof a Logical QueryPlan 152
9.3.1 AST Generator 153
9.3.2 Logical Query Plan Generator 156
9.4 CodeGeneration 158
9.4.1 Query Plan Optimization 159
9.4.2 TargetCode Generation 159
95 Summary 165

\Y TABLE OF CONTENTS

IV Evaluation of the Research 167
10 Evaluation 169
10.1 RelatedWork 170
10.1.1 HumanFactors 170

10.2 A Denition of Usability 171
10.3 The Evaluation 172
10.3.1 Recruitmert of Participants 173

10.3.2 TaskPreparation 174

10.3.3 Pilot Session 175

10.3.4 Training Session 175

10.3.5 Evaluation Session 176

104 Results. 177
1041 Eectiveness-Errors 177

10.4.2 Eciency - ResultingTimes 181

10.4.3 User Satisfaction 182

10.5 Summary 183

11 Conclusions 185
11.1 ThesisSummary v it 185
11.2 Contributions from This Thesis 186
11.3 Suggestiondor Future Work 187

V Bibliograph y 189
VI App endix 203
A The BEE framew ork 205
B Physical operators' algorithms 207
B.1 StreamClass 207
B.2 Table-scan/Selection. 208
B.3 Table-scan/Selection. 208
B.4 Operatorsforsets. 209
B.5 Operator for Unnesting. 211
B.6 OperatorsforJoin 212

B.7 Operatorsfor Nest 213

List of Figures

21
2.2
2.3
24
25
2.6

2.7
2.8
2.9

3.1

3.2
3.3

3.4
3.5

4.1

5.1
5.2
5.3
5.4

5.5

Colliding a beamof particles againsta target. 8
The HERA-B detectormachine 9
The life phasesof a typical HEP experimert. 10
The Triggersand the Data Acquisition System. 13

Data producedby the HEP machine beforethe reconstruction 15
Informal description of the results of the major transforma-

tion phases.. 16
User builds his own query systemfrom scratch 18
User codeswith di erent setsof available libraries 19
Multi-users'/programmers' query over a framework 21

Detailed UML model of the analysisof the relevant event

data 29
UML details of the reconstructedVertex and Particle. . . . 31
Object graphrepreseting the physics'analysisdatabaseat

theinstancelevel 32
Query stepsfor generalanalysis 33
Example of a user's query, (pseudaode basedon a real

QUETY). « o o e e e e e e e e e e e e e e e 35
Sequencesfquerysteps oL 39
Categorization of existing query systemssince1970 46
Example of tabular languagesakenfrom [18]. 52
Example of GraphLog[37].. 53
Cigales[79] Metaphor-based.Usesthe map metaphor. Ex-

ampletakenfrom [18]. 56
Hybrid languageVOODOOI[5((basedon OQL). 57

\Y

Vi

LIST OF FIGURES

6.1 Domain-specic dewelopmert 65

7.1 Unifying framework - The userviewshis particular analysis

framework in the sameway asothers.. 74
7.2 SystemserviCes. i 76
8.1 Example of a completequery: the D" decy 82
8.2 Collectingthedatainstepl 82
8.3 Signature of the Collection PHEASANT Operators 83
8.4 Collectingthedatainstep2 83

8.5 Signature of PHEASANT Operatorsfor the Event ltering 84
8.6 Selection,Aggregation, Transformation, TransformationRe-

sult . .. 84
8.7 A) ComparisonB) Minimal distance 85
8.8 Signature of PHEASANT Operatorsin the deca descrip-

tionstep. 87
8.9 Speci cation of the result set:1D, 2D, 3D, Value result and

operator omission. 87
8.10 Signature of PHEASANT's Result Operators. 88
8.11 Context-sensitive graphgrammar 89
8.12 PHEASANT's BNF-likegrammar 91
8.13 Terminaldenitions 93
8.14 Grammar of the textual elemens of PHEASANT QL ... 94
8.15 Type signature of our algebraicoperators. 105
8.16 Operatorsof the target algebra 106
8.17 Example of an algebraicform represeted asatree. 110

8.18 Map operator - Translatesthe visual query into our algebra.111
8.19 Translation rulesfrom the AST to query Plan - Collection-

Evert materialization 112
8.20Usedsynbols 113
8.21 Translation rules from the AST to query Plan Collection-

Evert materialization 114
8.22 Mapping result of collection query example. 116
8.23 Mapping the Event speci cation operator. 117
8.24 Mapping result of an exampleof Event Speci cation 118
8.25 Translation rules for the selectionoperator 119
8.26 Translation rules for the selectionoperator 120

8.27 Simple Selectionexample. 121

LIST OF FIGURES vii

8.28 Translation rules from the Transformeroperator 122
8.29 Example of the mapping of the transformer operator . . . 124
8.30 Translation rules for the referencesoperators 125
8.31 Example of the mapping of the referenceoperator 127
8.32 Translation rules for the aggregatoroperator. 128
8.33 Result of a simple aggregatoroperator example 129
8.34 Translation rules for the minimal distanceoperators. . . . 130
8.35 Result of the minimal distanceexample. 132
8.36 Translation rule of the comparisonoperator 133
8.37 Result of a comparisonsimpleexample 134
8.38 Result settransformationrules. 135
8.39 Signature of the histogram aggregatefunctions. 135
8.40 Transformation result of a result operator using the aggre-
gation function Sum. L. 136

9.1 Model levels. The domain experts will deal with the meta-

modeling of physicsobjects. 140
9.2 Use cases- the use casesin dark grey are covered by the

prototype implemenation. 142
9.3 Generalstructure L 143
9.4 Transformationfrom CSGto ASG 146
9.5 Componens of the Visual Editor 147
9.6 PHEASANT querylayout 148
9.7 Meta-description of the concretesymbols 150
9.8 Specifyingthe shhemain PHEASANT 151
9.9 Generationof a logicalqueryplan 152
9.10 Unfolding the QCollection 153
9.11 Naive rewriting of the comparisonoperators 154

9.12 The D* deca examplerewritten with a naive approad . . 155
9.13 Rewriting the graph into a tree by restructuring the com-

parisonnodes 155
9.14 Sourcecodegeneration. 159
9.15 Physical operators: Signature of the Table-scan 162
9.16 Interacting with the storageengine 163
10.1 The ewvaluation processsteps. 172
10.2 E ectiv enessC++/BEE: Hugeerrorrate. 178

10.3 E ectiv enessPheasatt Hugecorrectrate. 179

viii

LIST OF FIGURES

10.4 Error analysisin BEE framework (percert values) 180
10.5 Error analysisin Pheasamn (percer values). 180
10.6 Language constructs analysis: Subject evaluation. Scale
from 1(worst) to 5(best) L. 180
10.7 E ciency of C++/BEE vs. Pheasamt Lesstraining time
required. 181
10.8 E ciency C++/BEE vs. Pheasatr Much lesstime to com-
pletethetask., 182
10.9 Time analysis- The result times wereroundedto multiples
of S5minuteunits. L 183
10.1C ectiv enessC++/BEE vs. Pheasamt More con dence
fromtheuser.. 184

11.1 Researb areas. v v v v i e 187

Chapter 1

In tro duction

For the physicist, the analysisphaseof High Energy Physics (HEP) is the
culmination of years of work on an experimert. In this phase, physics
experimertalists look at the sheervolume of data collected by detector
madinesand try to infer statistical physicsresults.

The software systemsin these areashave beengrowing in line with
the complexity of the experimerts. Unfortunately, for the software of
mining the data stored, the growth took an unstructured way. This is
re ected negatively in the wholeprocesgperformance ,meaningboth user's
productivity (in terms of man hour) and the query systems'e ciency (in
terms of speed,spaceand cpu usage).

The work descriked in this thesiswants to interveneby mitigating the
problemson the usersproductivity. We adieve this by pioneeringa new
approad for doing physics analysisby making use of a Domain Speci c
Visual Query Language.

1.1 Motiv ation

The study of coheren techniquesfor the dewelopmer of proper exible
guery systemshas been neglectedby the physics comnunity. To some
extert, this situation is explainedby the fact that until now, programming
with GeneralPurposeLanguageqGPL) and somehadking solutionswere
enoughto deal with the problem for the very few people that usedto
cortrol the wholeprocessof the small experimerts. This situation gavethe
community the erroneoudeelingthat little investmen would be necessary

1

2 CHAPTER 1. INTRODUCTION

to dewlop a proper software solution. Howewer, the complexity of the
analysisframeworks has grown considerably due to the enormoussize of
the data. The next generationof experimerts like ATLAS[34], LHCb[32]
and CMS! [28]in LHC? [31] require structured and performart software
systems,which meanse cien t query algorithms and high productivity.

This is calling for experts, both from the elds of physicsand of com-
puter science,to work together on the dewelopmen of a robust analysis
framework. To cortinue the approad used until now would result in
strong lack of performance(at all levels: ine ciency, non-productivity).
Physicistsare motivated to investigatephysicsand want to decoupletheir
responsibility from the details of the system,but in reality, they are forced
by these systemsto behave like end usersand application dewelopers.
Their productivity decreasegreatly with time. Yet on the other hand,
sincethe existing frameworks do not provide clear levels of abstraction,
the computer scierists are forcedto have a proper badkground in physics
in order to have room for improving the e ciency of the systemby de-
veloping proper optimization techniques. As a consequencehis situation
callsfor a newstrategy to introducethe required productivity, modularity
and e ciency in a cortrolled way.

To nd aproperly structured solution is very important for this branch
of science,sincefor the coming generationof physics detector macdines
with their dimensionand complexity, the traditional techniquesare not
su cien t.

This situation is an interesting challengefor computer science,since
a new application area for this scienceis opened. This domain of re-
seard has, for instance,requiremens which are very di erent from those
in businessand industry. A full investigation must bedoneto nd the core
technology best suited to dewelop a query framework for this particularly
complexdomain.

1.2 Objectiv es

The aim of this work is to to increasethe userproductivity and introduce
a framework that allows computer experts to investigatee cient ways to

1Compact Muon Solenoid
2Large Hadron Collider

1.3. SCIENTIFIC DOMAIN OF THE THESIS 3

optimize the High Energy Physics analysis processwithout requiring to
be physicsexperts.

We achiewe this by introducing an engineeringmethodology and mak-
ing useof a declarative Domain Speci ¢ Visual Query Language(DSVQL)
to raise the abstraction level in the existing query systemsand to give
room to new optimizations of di erent levels. In order to corroborate our
argumer, we have implemerned a prototype framework, called PHEAS-
ANT, and avisual languagenamedPHEASANT QL. This framework was
deweloped in the cortext of the last big experimert, HERA-B in DESY?,
running in Europe beforethe LHC era. It is an interesting casestudy,
sinceit hasreal data to study and usersto interact with.

1.3 Scientic Domain of the Thesis

In order to investigatethe solution for this domain, we crossedseeral sci-
ernti ¢ domains,basingour solution on their techniques. The mostimpor-
tant amongthem are PhysicsComputing (PC), Domain Speci ¢ Modeling
(DSM), DatabaseComputing (DC) with Flexible Query Systems(FQS),
Human Certric Interfaces(HCI) and Visual Query LanguageqVQL).

1.4 Thesis Outline

This thesisis divided into four major parts:

The rst part dealswith the problem de nition. Here,we introduce
the readerto the context of High-Energy Physics experimerts. It
is followed by a description of the data mining phase, also called
data analysis,and nishes with the problem speci cation and the
motivation for our work.

In the secondpart, weintroducesomeconceptsthat are usefulfor the
argumernation of our proposedhypothesisin the next part. Query
systemstaxonomy and domain speci ¢ modeling are descriked.

The third part approadesthe hypothesis. Using domain modeling,
a languageand a correspnding framework are designed. The core
technologiesare detailed.

3Deutsches Elektronen Synchroton in Hamburg, Germarny

CHAPTER 1. INTRODUCTION

The fourth and last part is dedicatedto the evaluation results and
conclusions.

Part |

Problem De nition

Chapter 2

Context of the Work

In this chapter, we familiarize the reader with the environment of High
Energy Physics (HEP) and the computing activities involved. This way,
we lay the foundations for the problem de nition preserted in the next
chapters, concerningthe physicist data mining phase(commonly known
asanalysisin the HEP comnunity).

In Section 2.1 we start by giving a quick overview over the physics
goals. We canonly roughly sketch the basicsof HEP, dueto the complexity
of the subject and spaceconstrains. A good introduction to the subject
canbefoundin [61]. Then we explainthe commonarchitecture of the HEP
experimerts and give a historical perspective of the analysisframeworks
and the analysistools ewlution.

2.1 Overview of High Energy Physics

Generallyspeaking, physiciststry to discorer newshort-lived particlesand
their properties or the properties of their interactions, in order to dewelop
a model of the real world at a subatomiclevel. For this, they usee.g. large
acceleratorsin which patrticles collide with others, and detector madines
composedof sub-detectorso measurethe results. The acceleratorsupplies
the particles, which are grouped into bunches with energytaking them
closeto the speedof light (large kinetic energy), making them collide with
other particles, xed targets or other beamsof particles.

When masseslamtogether at hugekinetic energiestheir energycon-
verts to new particles and their kinetic energies. The bigger the initial

7

8 CHAPTER 2. CONTEXT OF THE WORK

Proton
Beam

Target

Detector

Figure 2.1: Colliding a beam of particles againsta target.

kinetic energyis, the bigger the massesof the products potertially are.
The new massresulting from the very high energy collisionswill appear
asdi erent, unusual, and interesting particles. Someof them have a short
life, sothey decg into other particles beforethey can be detected. Those
particlesthat live longer,dueto their more stable nature, will be detected
by sub-detectorswhich track them in space,identify their type and de-
termine their energy As an example,we have in Fig.2.1 the collision of
a proton beam with a target. This producesa patrticle calledD*. D*
decygs to other particles before readiing the detector. Newertheless,its
decg products live long enoughto crossthe detector madine and be
detected.

When the experimerts are running, a period of data acquisition, a so-
called run beginsas soon asthe systemstabilizes. The time-span during
which two buncdhes collide is called an event From now on, we will see
an ewvert as an abstract granular enity that refersto the data taken by
the detector machine immediately after the collision during this referred
time span. In the main detector madine, large sub-detectors,which are
independert of eat other, recordthe resultsof an evert. Unfortunately, it
is technically infeasibleto gatherall information of all collisions(dueto the
sheervolume of data), sothe physicists lter the data with se\eral levels
of triggers. The resulting data is initially stored on tape. After having
examinedthe data, the acceleratorand the detectorsare recon gured (if
necessary)and another run can be started.

The reconstruction and investigation of decgys and decg chains of
short-lived particles are the main computationally demandingtasks of the
data analysis,which starts after the data acquisition. Roughly speaking,in

2.2. THE DETECTOR 9

this phase,physicistshave to selectthosekind of decgs and particlesthey
are interestedin. For this selection,it is usually necessarto reconstruct
parts of the particles' trajectories (also called sggmentg, to match them
with other segmets in order to reproduce the full particle trajectories
(called trackg, to extract further properties, and to deducethe complete
decyg chain.

2.2 The Detector

vertex detector hi-Pt tracker ring imaging cherencov detecta

outer tracker

transition radiation detectot

electromagnetic calorimete
(— muon detector

magnet 160 mra

em, . ., 0 B, 2

Figure 2.2: The HERA-B detector madcine

The work descrited in this thesiswas deweloped in the cortext of the
HERA-B experimert, basedin Germary at the DESY! Laboratory.

HERA-B is the biggestworking experimert in Europe, beforethe next
generationof probing madines comesaround 2007at CERN?. For Hera-
B, 32institutes and about 250collaborators from 13 courtries are working
together. The madchine built, depictedin Fig.2.2, wasmeart to seart for
CP violation in decas of B mesonsinto the \gold plated" deca mode
B! J= K2, the details of this conceptsis out of the scope of this thesis
but can be consultedin [35].

1Deutsches Elektronen-Syndhroton in Hamburg, Germany
2European Laboratory for Particle Physics, Genea, Switzerland

10 CHAPTER 2. CONTEXT OF THE WORK

Design and
Assemble
of the Detector

Detector
Comissioning

Data Acquisition
(On-line system)

Data .
Reconstruction
(Off-line system) 1

A

Data Analysis

(Analysis System)

Figure 2.3: The life phasesof a typical HEP experimert.

In Fig.2.3 we sketch the v e typical life-phasesof a HEP experimert
. It starts by the designand detector asserble, followed by its commis-
sioning. As soon asthe detector is ready the data acquisition takesplace
making use of the on-line systemstechnology (hardware and software).
Oncethe data is collectedthe o -line systemswill take the role of looking
at the signal data and construct interesting physics quartities. Finally,
with this quartities the end-user(the physicist) will proceedto analyze
(or mine) this generateddata.

In the next section, we have a look at the detector maciine and its
componerts. Togetherwith this description, we alsoexplain the last three
referred phasesof the hep experimert. We descrike the on-line systems
which are usedin the acquisition phase,also called data production. Fol-
lowing that we descrile the o -line systemsand at last the analysis(the
nal computing intensive phaseof the experimert).

2.2.1 The Mac hinery

Everything starts with the accelerator,which producesa beamof particles.
As the name indicates, the acceleratoris the piece of hardware which
provides energyfor the particles, acceleratingthem closeto the speed of
light. Basically, there are two kinds of accelerators: linear accelerators,
where the long tunnels have the shape of a straight line, and circular

2.2. THE DETECTOR 11

accelerators.

In DESY, this madine is called HERA. It is a large undergroundring
tunnel, 10 metersbelow the surface,with a circumferenceof 3 km. The
tunnel is 5 metersin diameter.

In HERA, the beamconsistsof a lined up sequencef seeral groupsof
particles of the sametype separatedby a given distance,called bunchesn
the physicsjargon. Thesebunchescomewith a frequencyof 96 seconds,
i.e. this gure denotesthe distancebetweenthe bundes.

After the particles are acceleratedthe collision takesplace. There are
two approatesto provoke the collisions: either xed target or colliding
beams. In the rst approad, particles are made to crash into a solid
block or gasof sometype. The secondapproad is basedon the conceptof
making two bunchesof particleswhich travel into opposite directions meet
at a certain point in space.ln HERA-B, wiresof di erent materials, called
the target, are approatedto the beamwhile the bunchesare passingby,
provoking collisions with the particles on the wires at a very fast rate,
which is called the interaction rate.

After the collision, it is necessaryto detect and measurethe results.
Big detector machines are built around the interaction region, extending
from a point very nearthe collisionto dozensof metersaway. They mea-
sure the particles that survive longer, like electronsor muons, and their
properties (charge, invariant massof the particles that are generated,di-
rection and momertum, etc.). With this information, it is possibleto
reconstruct the original particles from which they decged, proving their
existence,and to measurethe desired properties of the interactions be-
tweenthem.

The typical HEP experimert apparatus consistsof:

Interaction region/T arget: Where the collision takes place.

The detector:

Vertex trac k detector: Measurescoordinates of the hits provoked
by vertex particles very near to the interaction region.

Magnet: De ects the passingparticles with an angle which is pro-
portional to its momertum.

3The future circular acceleratorunder construction at CERN, called LHC, will have
a perimeter of 28 km. The planned TESLA will be a linear collider with a length of 33
km.

12 CHAPTER 2. CONTEXT OF THE WORK

Ring Imaging Cerenk ov Detectors (RICH): Identies the kind
of particles.

Tracker detector: Measuresseeral coordinate hits along the par-
ticles' trajectories.

Electronic/Hadronic calorimeter: Measuresthe energy of elec-
trons or hadrons and identi es (separates)them.

Muon chamber: Identies and measuresmuon particles.

The generalstructure of the madine is descriked in Fig.2.2.

The main idea of thesedi erent layers on the detector is to generate
enoughconbined information to explain which particles crossedthe de-
tector and provide this information to the peopledoing analysis,who will
try to reconstruct what happenedduring the collision.

2.2.2 On-line System - the Triggers and Data Acqui-
sition System

Due to the sheervolume of data, it is technically infeasibleto gather all
information of all collisions. Moreover, in many casesthe probability of
producing the interesting reactionsthe physicists are searding for is very
low, comparedto other kinds of reactions. As an example,HERA-B was
searding for interactions that have certain particles in the nal state.
With the rate of 10 million of collisions per second,in other terms, a
frequencyof 10 MHz, that kind of evert will be producedonly onceevery
10" interactions (collisions). Therefore,complex ltering trigger systems
have to be designedin order to separatethe few interesting interactions
from the large badground of uninteresting everts. In HERA-B, a three-
level trigger systemwas built.

During the processe®f data acquisition and reconstruction, the large
data setsof theseexperimerts are stored onto robotic tape systems.

The sthematics of the data ow during the data acquisition are de-
scribed in the Fig.2.4. We dedicatethe rest of this sectionto explain the
componerts depicted.

The data is pipelinedin the data acquisition system(DAQ) and waits
for the di erent trigger decisions.During this phase,about 1500software
processesre running on seeral Linux clusters.

2.2. THE DETECTOR 13

Detector Machine Collision

Raw Data
\/
Filter Trigger .
Decision .. Environmenta
B Data
\/
Raw+Reconstructed Data
— I
_/
_/
Third Level
Storage
On Line System
_/

Figure 2.4: The Triggersand the Data Acquisition System

First Level Trigger (FLT)- As soon asthe analogsignal comes
out of the detector chambers, it is ampli ed, discriminated (by mak-
ing the di erence betweenwhat is a valid signal and what is just
noise),and digitized in an electronicboard namedFront End Driver
(FED). All this data is pipelinedand waits for a decision. This deci-
sionis taken by the rst level trigger hardware within a time frame
of 10s . It consistsin looking at the hits in the seeral sub-detectors
and identify trajectory patterns that justify acceptionor rejection
of the information. This level is dealingwith a data rate of 5 10%?
bytes/s.

Second Level Trigger (SLT)- The dataresultingfrom the FLT is

14 CHAPTER 2. CONTEXT OF THE WORK

distributed among1000Sharc[15Digital SignalProcessorgDSPs)[54].
TheseDSPsare installed in VME crates' with a very e cient data
bus, which transports the data to the third/fourth level trigger. The
SLT is a programmablelayer that allowsto run algorithms real time
constrained for selectionsbasedon additional information coming
from the detector. It executespattern recognition algorithms to re-
construct the trajectories of the particles inside the detector and
can determinethe invariant massof the particlesin order to decide.
These algorithms have to take the decisionsin 1 ms, this level is
dealingwith a data rate of 25 1(° bytes/s.

Third/F ourth Level Trigger (TL T)- The information is then
pipelinedto acluster[46,47] composedof 240microprocessorsodes.
Thesenodesrun a program for the full reconstruction of the events
make somelooser selection of the interesting ones, and, basedon
somecomputed likelihoods, classifythem in the di erent categories
that may be interesting for the di erent kinds of physics analysis.
This reconstruction is more time consuming, therefore the trigger
decisionhasto be takenin 10 ms. This level is dealingwith a data
rate of 250 1CP byte/s.

Finally, the raw data (signal information) and on-line repro cessed
data (physical quartities extracted by the recognition algorithms which
wererun on the raw data) are stored on tape with a data rate of 2.4 10°
bytes/s.

2.2.3 O-line System - Data Reconstruction

The real-time systemdescribed previously providesa rst level of analysis
and selectionof physicsdata, which hasto be processedautomatically.

When the data storage/production is nished, we can categorizethe
kinds of data[12, 13] produced and/or usedin an experimert detector
madine in the following way (seeFig.2.5):

Basic HEP constants: for exampleconstarts like massesof dif-
ferernt particles.

4VERSAmodule Eurocard. Systemsfor mission-critical and real-time applications.

2.2. THE DETECTOR 15

Environmental Data

1

A

[Geomelry | [Setup | [Period| | Calibration & Alignment |
| = E= | |
)

Luminosity

w
g
c
[T}
S

Figure 2.5: Data producedby the HEP madine beforethe reconstruction

Environmen tal Data:
Setup - Cabling connectionsand software con gurations.

Geometry - There is a nominal geometry that descrikes the
shape of the detectors, their positions, etc. It is obtained medan-
ically (by automatic reading of the measuringinstruments) during
the data acquisition and afterwards with the calibration and align-
mert data.

Calibration and Alignmen t - The geometryof the detectors
is obtained medianically, by readingthe measuringinstruments dur-
ing the acquisition. Howeer, the accuracyof the detector position
is obtained only in the order of millimeters, which is lessprecision
than neededlater. Therefore,it is necessanto apply alignmert al-
gorithms in order to determine with a precisionof meterswhere
the detectorand its sub-detectorsare located, comparedto the beam
position (and, in the caseof the sub-detectors betweenead other).
The alignmernt algorithms make use of calibration and alignmert
data. This data is stored during the data acquisition and corrected

16 CHAPTER 2. CONTEXT OF THE WORK

afterwards by the sub-detectorexperts.

Period (or Slow Control): Status, Luminosit y - Condi-
tions like atmospheric pressureand temperature can in uence the
precisionof the madine. This information, which doesnot change
very fast, is stored in a databasesystem[6 14].

Event Data (raw):

Event, sub-detector FED bit pattern - Signaldata is char-
acterizedby being written onceand never modi ed.

<4 HEK

(@) Raw data (b) Physics quan tities (c) Detector interaction (d) Decay (e) Basic physics

2037 2446 1733 1699
4003 3611 952 1328
2132 1870 2093 3271
4732 1102 2491 3216
242 1231 33

|I 3451 1942 1. 29
3742 1288 2343 7142

Figure 2.6: Informal description of the results of the major transformation
phases.

Data cannot be useddirectly asit comesfrom the detector (it con-
sists only of electronic signals). Therefore, it needsto be transformed
into some quartities the physicist is able to handle and to understand.
As a consequencethe raw data is transformed in seweral phases. These
transformation phasesare shown in Fig.2.6 from a) to e). Briey, we can
descrile the processat the conceptuallevel asfollows.

The raw data in (a), composedby read-out addressesof the detec-
tor, bit patterns, etc., is rst cornverted to the description of the hits (i.e.
points of interaction of the particles) in eat layer of the detector (b).
To passfrom (a) to (b), seweral problemslike noise,detector ine ciency,
ambiguity, resolution, alignmert, and variations in temperature must be
solved by calibration, noisereduction, and alignmert algorithms. As a
result, information about the interaction of the particles with the detector
material is obtained. This is the starting point for the next phase,which
is the pattern recognition of physical segmets, clusters, and rings. This
way, particles crossingthe detector are identi ed (c). This last computed
information is used by the scierists for the deca studies(d). The re-
sults will provide physical statistics and probability gures to support the
theoretical model of particle interaction under investigation (e).

2.3. HISTORIC PERSPECTIVE OF THE ANALYSIS SYSTEMS 17

2.2.4 Analysis System

One of the main tasks of the data analysis software in experimerts on
high energyphysicsis the reconstruction and investigation of deca/s and
deca chains of short living particles. A lot of information from di erent
reconstruction algorithms (e.g. reconstructed primary vertices, particle
identi cation, momenum determination etc.) must be conbined in order
to identify trajectory conmbinations which have a commonorigin and be-
long to the decg of another particle. The reconstructeddecged particle
can be itself a decg product in a complex decg chain and usedas an
input for further deceg reconstruction.

Roughly speaking,the analysissystemsare composedof a visualization
tool, a set of scieri c calculation libraries, and a storage manager (a
detaileddescriptionwith the history of its ewolution is cortained in Section
2.3). Traditionally, in a rst stepof his analysis,the userselectsa subsetof
data from the storagemanager. Then, se\eral reconstruction algorithms
with scieni ¢ calculations lter out data and computenewvaluesthat are
storedin private collections. Finally, the new data collection is visualized
in the visualization tools (for instance by histograms). In Chapter 4, we
will explain the analysisphasein more detail.

2.3 Historic Perspectiv e of the Analysis Sys-
tems

In this section,we are goingto descrike the structure of the analysissys-
tems, i.e. the storageand visualization tools, and their historic ewolution.
With this description, we already start approading the nature of the
problem in the analysis phase. In fact, understanding the ewlution of
the architectures will help usto understandboth how the legacysystems
dictated the systemarchitecture of the presen experimerts and what the
main reasonsfor the growing dissatisfactionof their end usersare.

We will descrike the ewlution from the early stages,dominated by an
unstructured approad, till the time theseframeworks adoptedthe object-
oriented design. We will end with a description of the current trends and
future tendencies.

Sincewe will usethe conceptsof the levels of abstraction in a DBMS,
we will shortly de ne what we understandby the three levels: conceptual

18 CHAPTER 2. CONTEXT OF THE WORK

(or external), logical, and physical. In summary the conceptual model
is concernedwith the real world view and understanding of data; the
logical model is a generalizedformal structure accordingto the rules of
information sciencethe physical model speci es how this will be executed
in a particular DBMS instance.

2.3.1 Unstructured Approac h

User/Developer

l codes and gets results

copies files to

second level Application
storage
110
\/ \/
\/ \/
Third Level > Second Level
Storage Storage
\/ \/

Figure 2.7: User builds his own query systemfrom scratc

In the early and small experimerts, data was usually organizedin
compressed,self-describingdata formats stored in at les. The user
was responsiblefor fully coding the completequery, including loading the
data from les into main memory, query computation and result analysis
code (seeFig.2.7). A deepknowledgeof programming, esgecially in the
FORTRAN language,was necessary The data sdhema and the storage
formats were unstructured and changedvery often, which madethe code
dicult to reuseand maintenancea nightmare.

2.3. HISTORIC PERSPECTIVE OF THE ANALYSIS SYSTEMS 19

In the early experimerts, this approad was easyto handle. Howe\er,
whenboth the data volume and the schemagrew, the commnunity soon re-
alizedthat alot of main memorywasneeded.The code for executingl/O
tasks had to be redonecortinuously The useralso had to worry about
things like how to minimize the number of accesseso the tertiary stor-
age,which was possibleonly by knowing beforehandwhich les cortained
relevant everts and wherethey were physically located in the system. In
addition to all that, the userdid not always implemert the most e cien t
code. In consequenceo build up a library that brings the relevant parts
into main memory for processingbecamethe next designconcern.

11

Scientific & Statistics
Calculation Package

User/Developer

Codes Visualization|

(histogramms)
b Ee—

Statistics and Visualizing

Visualization Package

l Codes Selection

Copies Files to 1/0

Second level

Physics Selection

Storage Application
1/0 Stores Private selection
< >)
\/ \/
\/
\/ \/
Third Level Second Level N Tuple
Storage Storage
\/
\/ \/

Figure 2.8: User codeswith di erent setsof available libraries

Specializedpadages(seeFig.2.8) weredewelopedto provide a setof in-
dependert libraries providing specializedl/O togetherwith algorithms for
physical analysisand mathematical calculation, and functions for statis-
tics, histogramming and visualization. The user still had to deal with
the growing complexity of the data's physical layout, but had accesdo a
widely dispersedset of padkagesto re-use(\glue™) insteadof doing every-

20 CHAPTER 2. CONTEXT OF THE WORK

thing by himself.

A standard storageformat for evert data called ZEBRA[21] was de-
ned for the data storedin les in HEP. It was quickly adoptedin most
of the HEP experimerts, sinceit simpli ed the code for looping inside the
les. The ewven is seenasthe granularity of the data, the cortents of them
asblack boxes,which had to be interpreted by the usercode.

Typically, the usecasewould start by a pre-selectionof les that might
contain interesting everts. The user had to program marny lines of code
usingimperative languagedike FORTRAN to specify the application code
represeting the query The query program would loop over the evert
data stored in eat le, compute new valuesand determine if they were
interesting enoughto storein a specic at le on alocal workstation. In
the physicistsjargon, the result wasan n-tuple table. This table wasthen
usedfor the nal statistical calculations.

At this point, theseanalysisframeworks made no distinction between
the physical and the logical levels and, obviously, the conceptual model
was not completely covered. The user had to know the speci c layout
and particular storagelocation of the data. In order to extract the data
from di erent complex sourcesand to deal with the complexity of the
data, including the transfer to main memory, it was necessaryto write
code. Theseframeworks becametoo complexto use, and the practical
reusability of the producedcode was limited.

The volume of the data (that had risen to magnitudes of terabytes)
and its storage,together with the needfor expensive computer resources,
forced that hundreds (sometimesthousands) of usersat di erent levels
(physicists doing analysis,componert experts extracting and generating
physics analysis data, system administrators) had to accesshe data in
certral data repositories. At the sametime, all of them were expecting a
highly e cient system.

Visualization Tools

By then, tools like PAW[33] had appeared, which provided the end user
with subroutinesthat would integrate the 1/0 padkagefor accessinghe
referredn-tuple, and with data visualization padkages(mostly histogram-
ming). While this was very corveniert for generating histograms and
statistical calculus,it was extremely di cult to usecomplexdata struc-
tures that required referencesamong data objects (this problem will be

2.3. HISTORIC PERSPECTIVE OF THE ANALYSIS SYSTEMS 21

more clearin the next chapter whenwe describe the conceptualmodel and
the logical shema). Besides,a method to idertify all data items was nec-
essary Queriesat this level were obviously limited and totally dependert
on the structure of the tuples de ned by the user.

2.3.2 Analysis Framew orks

OQ Q User/Developer

Cades Visualization

(histogramms) . . .
~—— | Statistics and Visualizing
Visualization Package
Codes Selection '

Scientific & Statistics

Calculation Package
Framework

Physics Selection [+—

i 110 . .
Stores Private selection
\/ \/
Event Data
Manager
N Tuple
\/ \/

Figure 2.9: Multi-users'/programmers' query over a framework

A secondgenerationof approadesto this problem, (seeFig.2.9), still
usedby many experimerts world-wide, started to implemert hybrid object-
oriented frameworks, like ARTE[4], where the other paradigmswere in-
herited. The idea was to cope with the growing user demandfor query
applications which usean object-oriented design.

Theseframeworks were meart to ceriralize all the padkagesfor sup-
porting the tasks emergingduring the life phasesof the experimert, in-
cluding data production, simulation, transformation (in physics jargon

22 CHAPTER 2. CONTEXT OF THE WORK

re-processing)of the raw data into physicsdata, and nally the analysis
phase. Cluster solutions were chosenin order to increasecomputational
power with cheap commercialhardware.

Although not worrying about the speci c requiremerns for the analysis
phase,the great achievemen of thesesystemswasto provide transparert
accesdo ewery le with persistert evert data. It did not matter whether
it residedin secondaryor tertiary storage.It gave rise to seeral projects
whosemissionwasto optimize the I/O performance.

This secondgenerationapproad provided the end userwith the "main
ewvert loop abstraction”, where the program loops over the event data
elemers storedin the le and handsthem over to the physicsalgorithms
that are responsible of knowing the proper sthema and extracting the
required information into main memory Typically, the userhad to know
in which le hewould nd the event data elemeis he was interestedin
beforerunning the physicsalgorithms on them.

Theseframeworks werealsodeweloped with the goalof distributing the
gueriesand data on computer clustersin a multi-user ervironmernt. Some
of them have primitiv e load-balancingcapabilities. They did not exploit
parallelism.

Although they still do not hide the complexity of the data struc-
ture of the ewvernts from the end user, these frameworks introduced more
modularity and integrated the dispersed padkages. Newertheless,they
werestrongly boundto a particular physicsexperimert's implemertations,
which mean that the userhad to re-learnthem in every new experimert,
and was dependernt on legacy code. This way, algorithms were coded
in se\eral generalpurposelanguagesand paradigms, with steeplearning
curves and with a high risk of being ine cient when badly written by
inexperiencedusers.

Thesesystemsalsodo not presen di erent viewsfor the di erent users
involved as they do not hide the unnecessarilycomplex data structures
from the end users. As a result, usershad to map domain conceptsinto
design conceptsand then to implemertation concepts,without any ab-
straction involved. Partially, this confusionwas already generatedby the
physicist's dual role of deweloper and end user.

2.3. HISTORIC PERSPECTIVE OF THE ANALYSIS SYSTEMS 23

2.3.3 Object-orien ted Framew orks

Attracted by the advantagesof a DBMS - for example,concurrencycon-
trol, indexing support and query capabilities - somerecernt HEP experi-
merts, like BaBar® and AMS®, implemerted solutionsbasedon a commer-
cial OODBMS. Unfortunately, this approat hasshowvn to be problematic
- in part due to someinexperienceof the community in OO design,and
greatly due to the non-scalability of the available OODBMS commercial
solutions.

The introduction of the OODBMS technology allowed a clear sepa-
ration betweenthe physical and the logical levels and allowed someop-
timization approadeslike the introduction of vertical partitioning[87] of
evert data or bitmap indexes[48

Visualization Tools

JAS[30](Jara), ROOT[81](C++) and other visualization tools becamethe
object-oriented ewlution of PAW. Sincethe relative failure of OODBMS
usagefor HEP purposes,the tendency now is to change this situation
by dewloping a more adequate storage layer underneath the visualiza-
tion tool. This way, both visualization and storageare combined in the
sametool, and the user programsthe complete query in the same pro-
gramming paradigm. In order to make an HEP object persisten, special
madine independernt 1/0 medanismsare being deweloped (an example
is the package ROOT 1/0[81)).

As sud tools were originally designedto deal with a local storage of
the selectedn-tuple data in the physicist's computer, the missionof turn-
ing the tool into a distributed very large databasewithin a distributed
heterogeneousnulti-user ervironmert is necessarilyvery dicult to ac-
complish.

Although thesetools are meart to support the user during the query
programmingphase they have a confusinglogical shhemathat is unrelated
to the conceptualone. The physicist hasto twist the way he conceptualizes
the data into the unnatural object model thesetools support. They still
imply object-orierted programming activities using a growing number of
complexlibrary of functions which are di cult to learn by the end user.

SSLAC, USA
SNASA, USA

24 CHAPTER 2. CONTEXT OF THE WORK

2.3.4 Current and Future Trends

In 1997,in a vision paper at the VLDB conferencethe comnunity pre-
seried the requiremerts for their domain [43]with the idea of pushingthe
limits of technology Somegoalsfor the next generationof systemswere
set:

Deal with petabytes of data.

Support hundreds of simultaneousqueries.

Return partial results of queriesin progress(with time estimatesfor
their completion) and provide interactive query re nemernts.

Deal with data on secondaryand tertiary storageaccesdor simul-
taneousqueries.

Provide an ervironmert for data analysisthat is identical on desktop
workstations and certralized data repositories.

Support statistical selectionmetanisms(uniform randomsampling).

Provide a exible sdhemawhich supports versioning.

In part motivated by these requiremerts, some future experimerts,
especially in CERN (Atlas/CMS/LHC-B,etc.), are enbracing the deel-
opmen of a new system called GRID. The leading role of the CERN
institution worldwide normally has a strong in uence on the technology
chosenfor the other physicsexperimerts in the future.

The main mission of GRID computing is to coordinate distributed
heterogeneoushardware and storage resourcesamong a dynamic set of
individuals and organizationsin order to achieve a commongoal. It in-
volves the studies of peer-to-peer solutions applied to this domain's re-
guiremerts with dewelopmen and implementation in di erent areassut
as data replication, migration, security, processing,load balancing and
networking philosophies.Still at its starting phase,it aimsto be the next
big revolution on networking for sciertic computation in 2007,whenthe
next big experimerts at CERN (ATLAS, CMS) start to run.

In spite of the very complex, but promising technology, to our knowl-
edgeno seriousstudiesexist about the conceptualmodel for the analysis,

2.4. SUMMARY 25

logical shemasand analysis query patterns. We predict that this will
becomea seriousgapin the future whenit starts to be necessaryo tackle
the problem of user'sproductivity. The other problem directly related to
the lack of abstraction layers will be when the experts try to tune the
computational performanceof the query systems.

2.4 Summary

In this chapter, we have intro ducedthe physicist's HEP analysisphaseand
descriked the structure of the typical HEP systems. We have also given
an overview of the physicsactivities involved, trying to avoid unnecessary
complexdescriptionsthat are beyond the scope of the thesis.

From this chapter, we would like to highlight somekey ideasthat will
be handy for the discussionin the following chapters:

Only part of the total experimert's stored data is actually usedfor
physicsanalysis.

In order to mine the data, the end useradopts a dual role of appli-
cation programmerand user.

The deweloped tools do not allow for data independence.

The complexity of the data structures and the represetation of the
data is not hidden from the user.

In the next chapter, we are going to descrike in detail the physics
analysisprocessand the problem we proposeto sole.

26

CHAPTER 2. CONTEXT OF THE WORK

Chapter 3

The Physics Analysis Pro cess

This chapter is dedicatedto descrike the physicsanalysisprocessin more
detail. The documenation in this areaunder the perspective of computer
scienceis typically very poor, inconclusive and sometimescortradictory.
Therefore,we expect to bring somelight into this subject with our own in-
terpretation resulting from the experiencewe have with real usersrunning
analysissystemsin a running experimert (HERA-B).

We start by explaining the di erence betweenlow-level and high-leel
analysis. Then, we proceedwith an overview of the shema. We nalize
by explaining what major stepsare involved while querying the physics
data, and which query patterns we might expect.

3.1 Dening Physics Analysis- Low versus
High Level

There is still somecortroversy about the conceptsof low-level analysisin
the physicscomnunity. Therefore,we are goingto de ne our understand-
ing of them in the rest of this section.

Traditionally, analysisusedto involve writing code in a General Pur-
poseLanguage(GPL), like C++, Fortran, etc. This code wasresponsible
for performing the whole data transformation chain in the sameuser ap-
plication program, which includesthe reconstructionof physicsdata from
the raw data and the analysis. This implied the useof speci ¢ data from
the detector madinery sud asinformation on geometry calibration and
alignmert, to reprocessthe raw data in order to producethe physicsdata

27

28 CHAPTER 3. THE PHYSICS ANALYSIS PROCESS

and to run the query algorithms. This kind of analysis, now called low-
level analysis,is a legacyfrom old experimerts. It resultedto someextent
from the needthat the usershad to start with their analysiswhile the
detectorswere still at the phaseof con rming that the system function
matches the operational needs,also called commissioningphasé. The
main reasonfor this situation is that, asin any complexreseart experi-
mert, when using cutting edgetechnology, the behavior of the macines
is not always completely understaood.

Low-level analysiswas only possiblethanks to the relatively small de-
tectors. They were characterized by having both small data sets and
relatively simple data structures. The sub-detectors'description data was
very reduced.

At presen, due to the very large data set and the complex queries
required for the new generationof experimerts, this analysisis no longer
possible. Re-processingthe whole data set takes seweral months. In con-
sequencethe cortrol of sud data re-processingactivities shouldno longer
be on the users'side, but shift to someother actorslike the experimert's
managemet Then the low-level analysisis left to the macdine experts
that will only perform madine tests over small data sets. On the other
hand, high-level analysis, which queriessimply physics data and ignores
the details of the madinery involved, is the newway of analysis.

High-level analysisinvolves generating queriesonly on physics data,
with a speci ¢ data model in order to return the interesting statistical
results.

3.2 Monte Carlo Simulation

As we explainin the next section,while describingthe analysisdata model,
it is very commonin Physicsto usethe so called Monte Carlo simulation
technique (for more details consult any statistics book, for instance[83]).
It consistsin the random generation of values for certain variables ac-
cording to a model. It is generally used when there is the requiremern
to automatically analyzethe e ect of varying inputs on outputs of the
modeled system. This simulation technique was namedfor Monte Carlo,
Monaco, where the primary attractions are casinoscortaining gamesof

1The four main phasesof the experimert are: design, construction, commissioning
and operation (or data production).

3.3. ANALYSIS SCHEMA 29

chancesud asroulette wheels,dice, and slot madines,that exhibit ran-
dom behavior.

This statistics technique is very often usedfor the generationof sim-
ulated physicsdata. It follows a complex model to simulate all the par-
ticles that crossthe detector, their interactions betweenthem and with
the detector, in order to simulate the data that comesout of the detector
("hits").

3.3 Analysis Schema

Figure 3.1: Detailed UML model of the analysisof the relevant evert data

Basedon our casestudy, the Hera-B experimert, and physicists' de-
scriptions of other experimerts taking place worldwide, we derived the
conceptual model of the analysis data in a UML diagram that is de-
picted in Fig.3.1. It consistsof the following ertities: the generalized

30 CHAPTER 3. THE PHYSICS ANALYSIS PROCESS

Collection , from which other Runor evenothersareinherited; Rec Event
that aggregatefRecParticle , RecVertex (that canbe of two types: pri-
mary or secondary),and the simulation everts MCEvent that inherit from
RecEvent and store extra information MCParticle , MCVertex.

The attributes of the entity Run a typical specialization of the ertity
Event_Collection , de ne meta-datainformation for the Event data that
is being collected,sut asthe parametersof the experimert, e.g. the setup
of the detectors,the time spanof the data acquisition and generalquality
Issues.

Evert attributes descrile properties of the set of particles involved in
an ewvert. This ertity canhave up to 10 di erent attributes of mostly
Booleanand up to 80 enumeratedtypeswith a list of erumerated values
comprisingup to 80 values. Theseattributes are mainly referring to the
usageof certain algorithms for the re-processingof the particular event.
Some, but few, double precision attributes might be used. Finally, an
attribute of type integer might be usedto specify the versionof the same
raw evert that was reprocessed.

Events canbe simulated or real. A simulation meansthat the produc-
tion of random collisionsis simulated, by using the Monte Carlo method,
and that the particles and vertexesare reconstructedusing the samesoft-
ware algorithms as if they had really crossedthe detector. These par-
ticles and vertexesare generatedwith exactly the sameattributes asin
a real reconstruction. The di erence of this simulated data to the real
one, concernsonly the so-calledMonte Carlo truth, (in Fig.3.1 MCTruth
Particle and MCTruth Vertex), which are a one-to-oneassaiation of
the exact information about the simulated particles and vertexes. This
MC _Truth gives the information about the particles and vertexesas if
they were crossingthe detector beforethe reconstructionalgorithms track
and identify them. Mostly, given the complexity of the pattern recogni-
tion algorithms, the path of the particlesiderti ed is the nearestpossible
approximation to reality. This kind of information is usedextensiwely for
the determination of error rates and e ciency gures. Attributes for this
ertity can be Booleanvalues,for instance, or a list of enumerated values
in an attribute tag.

Fig.3.2 consistsof various ertities for the description of particles, ver-
texesand their correspnding simulation. Almost all of theseattributes
are double precisionnumbers.

A particle is, in general,descriked by its momerium, its massand the

3.4. THE QUERY PATTERNS 31

-
—

Figure 3.2: UML details of the reconstructedVertex and Particle.

coordinates of the rst measuredpoint of its trajectory. In the caseof
a decaing particle, the point could be the decging vertex. In the case
of neutral particles they can be descrited by the energydepositedin the
calorimeter detector and the position of this energydeposition, sincethey
do not have a measuredtrajectory.

In Fig.3.3, we presen an informal object graph of the described data
model. It represets the physics analysis' databaseat the instance level
asit wasde ned in Hera-B. Along with it, we shov some gures to give
an idea of the proportions and number of objects taken for the analysis
phase. These gures concerndata taken over a period of 6 months.

3.4 The Query Patterns

The physics data for the analysis can be describked as WORM (Write
Once and Read Many). Typically, the analysis queriesare issuedonly
once. This meansthat every new physicsquery requiresa new application
code. Newertheless,almostall have onesequencen common(seeFig.3.4),
where the rst three major steps are selectingthe available data (rst
Itering out pre-de ned collections,like Runs, and then retrieving setsof
the contained Evens), reconstructionof the deca for ead evernt, and the
last oneis visualization of statistics data (usually using histograms).

32 CHAPTER 3. THE PHYSICS ANALYSIS PROCESS

Private

-692 ~10.000.000 Simulated Events

~31.176.798 Real Events

Particle PrimaryVertex SecondaryVertex

SecondaryVertex PrimaryVertex Particle

~100 per Event 1.5 per Event ~10 per Event

0..10 per Event 0..5 per Event ~100 per Event

Figure 3.3: Object graph represeting the physics' analysis databaseat
the instancelevel

In this section,we are goingto descrile the di erent patterns and give
the pseudo-cde of a real life example.

3.41 Query Steps

In order to siewe out interesting subsetsof ewverts, the analysis starts by
selectingthe Collections . This involvespartial match queriesover some
Collection attributes. Usually, this makesuseof up to 5 dimensions.

The secondphaseimplies range queries over a small subset of the
Event properties. While the events can have as much as 10 di erent
attributes, i.e. 10 dimensions,the number of properties restricted by
mostly range and partial match queriesis usually much smaller, typically
1to 4.

With the Itered ewent data collectedin the rst and secondstep,
the physicists now try to reconstruct decg chains as a third step. At
this level, retrieval techniques must deal with many dicult problems:
enormousquartities of data, high data dimensionality, low-dimensional

3.4. THE QUERY PATTERNS 33

1 - Run/tag selection:
{ Trigger selection
{ Run period

2 -event Selection:

Filled bunch

No coasting beam

No empty events
Re ned conrmation of the trigger

Lt B et B e S e S Y

3 - Reconstruction:

Track selection

Particle ID Ilter condition
Com bination of trac ks
Vertexing

Kinematic or geometric lter conditions

{
{
{
{
{
{ ...

4 - Histogramming and/or comparisonwith Monte Carlo Simulation

Figure 3.4: Query stepsfor generalanalysis

region queries,and highly skewed data distributions. Howeer, they are
not interestedin all deca/s that took placein anewert, but want to sort out
data that is irrelevant to their currernt investigations. This also involves
computing and cading of intermediate results.

The third step starts by selectingthe di erent particles, \leaves", of
the deca tree. This involves selectionpredicateswith range queriesover
typically up to 8 dimensions.Sometimeswith the simulated data, the user
might beinterestedin the Monte Carlo truth. This will imply navigational
queries,which in the object oriented databasescorrespndsto the use of

34 CHAPTER 3. THE PHYSICS ANALYSIS PROCESS

path expressionsith implicit joins to single-\alued attributes (wherethe
particle or vertex objects refer to the correspnding MC _Truth _Particle
and MC _Truth _Vertex). This phaseis followed by explicit join querieswith
few range predicates, together with more or lesscomplex mathematical
functions to derive properties (which createsnew intermediate results).
The next operation might imply nearest-neigbor queriesof the newly
computedresults with someother stored data (lik e vertices).

The fourth and last step consistsof the visualization of the results
(in form of histograms,tree-like structures, n-tuples, etc.). Group-by and
aggregatequeriescan be usedat this level.

Querying does not necessarilystop here: userscan go badk to the
previous stepsand reformulate their query.

3.4.2 Example Query

In order to give a more concreteidea of the typical user'squery code, we
are going to presem a query of medium complexity (seeFigure 3.5) in
pseuda@ode. In this example,we are goingto abstract the physicsdetails
and only presen the algorithm that performsthe data manipulation.

The conditionsthat arepresened in the algorithm are mostly conjunc-
tive expressions.Thesemight make useof useror systemde ned functions
(like geometricaldistancesetc.).

The query starts with selectinga collection of runs. From these,a sec-
ond stepwill retrieve a sub-selectionof everts accordingto new predicate
conditions.

With this Itered selection,the user starts with the selectionof the
constructed deca/ he is interested in. Usually, the algorithm starts by
selectingthe particles and combining them to form the vertexing. This
vertexing canhave 2,3or more particlesconbined, or even se\eral vertexes
can be generated,depending on the type of physicsthe useris interested
in. A systemor userde ned vertexing function computesthe values of
the decaing particle. Sometimes,we make use of an operation like de-
termining which vertex storedin the ewvent list of vertexeshasa minimal
distancefrom another one. Finally, someof the values, newly computed
or not, are storedto be visualized.

As a last step, the visualization tool is fed with the resultsand displays
the information, typically making use of histograms.

3.4. THE QUERY PATTERNS 35

1)
2)

3)
4)
5)

6)
7)
8)
9)

10)
11)
12)
13)
14)
15)
16)
17)
18)
19)
20)
21)
22)
23)
24)
25)
26)
27)
28)
29)
30)
31)
32)
33)

34)

Declare: List Runs, List Everts, List Results
Result is a list of particlel, particle2, Computed Vertex and Vertex
Step number 1
while(run=nextRun()) f
if(conditions) Runs.append(run)
g
Step number 2
foreadh run in Runs f
while(event=run.nextEv ent()) f
if(conditions) Events.append(ewen)
g
Step number 3
Declare: List Particles and List Vertexes
foreadh evert in Events f
Particles= ewvent.GetParticle(conditions)
Vertexes= event.GetV ertex(conditions)
particles=P articles
While (particles.notempty()) f
headParticle=particles.head()
particles=patrticles.tail()
foread auxParticle in particles f
if (condition(auxParticle) and condition(head, auxParticle)) f
Declare: distance=1 and MinV ertex=fg
computedVertex=ComputeV ertex(headParticle,auxParticle)
foreadh vertex in Vertexesf
if(distant(v ertex,ComputedVertex)< distance) f
distance=distant(v ertex,Vertex)
MinV ertex=V ertex

g

g
if(MinV ertex.notNULL)

Result.append(headParticle,
auxParticle, computedVertex, MinV ertex)

g

g
Step number 4

Histogram(userSetup, Results)

Figure 3.5: Example of a user'squery, (pseudaode basedon areal query).

36 CHAPTER 3. THE PHYSICS ANALYSIS PROCESS

3.5 Summary

In this section, we have descriked the analysis phaseby introducing the
physicsdata model and describingthe query patterns.

Sincethe queriesdepend mainly on the kind of physicsthe researber
is looking for, they were usually consideredunpredictable and complex.
Howewer, as we have shavn, they tend to shov a common pattern. We
are going to usethis characteristic pattern as part of the solution of the
problem de ned in the following chapter.

Chapter 4

Problem statement

"The three most important factors that determine the succesr failure
of a databasesystemare performance,performance,performance!”..."at
leastoneof thesethree referencedo performanceimpliesthat of end-users
when interacting with the systemto accesdata, i.e., user productivity."
(for researbers) "t wisting their way of thinking sothat it ts that of the
available systemsis simply somethingthey are not willing to spendtime.”
Yannis E. loannidis.[62]

In the previouschapters, we have descriked the cortext of HEP exper-
iments and explainedin detail the areaof physicsdata analysiswherewe
want to make our intervertion.

In this chapter we conciselyexplain the problem betweenthe end-user,
the physicist, and the preset HEP query systems,and thereforeintroduce
our resulting motivation for this thesis.

4.1 The Problem

As we have explainedin the last chapter, the analysisqueries,which are
complex and apparenly issuedonly once, shov somecommon patterns
in reality. This situation justi es the usageof exible query systemsthat
explorethesepatterns to query the physicsdata storedin orderto improve
user productivity.

As already mertioned in the corntext description, the developmern pro-
cessof the analysis frameworks was very unstructured. Forced by the

37

38 CHAPTER 4. PROBLEM STATEMENT

circumstances,the usersbecamedewelopers, partially becauseof legacy
systemsand partially becauseno software engineeringsolution existed
that tackled the problem from its roots in a structured way. In fact, the
result was the dewelopmen of frameworks that do not provide data inde-
pendence,shaving complex data structures and schemaswithout hiding
the physical layer details. Typically, theseframeworks make useof se\eral
GPLs and a multiplicit y of complex ertry points. In other words, they
have complexinterfaces.

The current systemsare disadvantageousfor the three typesof system
actorsinvolved: normal users,systemexpert usersand systemde\elopers.

Normal users,or non-experts, are usually physicistswilling to do physics
analysiswithout any badkground on the analysissystemsimplemerted by
the experimert's experts. Generally they are dissatis ed sincethey are
usually not very good at programming. They do not have the neces-
sary badkground for performanceoptimization at any level. Hence,they
spendtoo much time with learning, coding, producing both sematrtic (al-
gorithms) and syrntactic errorsand waiting for the results. Thus, they are
distracted from physics.

Experts are characterizedby having a deepknowledgeof the experimert-
speci ¢ sdhema. They are experiencedin the framework internals and
(usually) master the programming languageand paradigm. They expect
from the system exibilit y and expressieness.Generally they cope with
the current situation, but with the growing complexity of the systems,
coding for analysisis getting more and more time consuming.

Generally for dewelopers or system maintainers the work is complex
becausethere are no abstraction levels. This meansthat any produced
changesa ect the whole chain, and implies that the userstend to reject
changes. Like in other engineeringprojects whereit is di cult to design
modular software, e ciency and performanceproblems are not easyto
solve. For thesesystemactors, which are no experts in physics,it is very
dicult to changethe situation sincethe documenation about the do-
main is very poor and sometimescortradictory. Use casesare not clear
without a profound understandingof the physicsinvolved, with the neg-
ative consequencé¢hat only few seriousstudieson query patterns can be
found (see[56]).

The consequencef the descriled situation is a lack of e ciency in the
analysisprocess. As we are going to descrite in the next section, there
are important tasksthat are time consumingand which depend directly

4.2. TIME CONSUMING QUERYING PROCESS 39

on the user'sskills.

As asummary we cansa that scienists analyzingHEP data are often
distracted from their real work becausethey have to learn many details
on computer sciencethat are completely unrelated to physics. Thus, the
analysis of data generatedby detectorsin High Energy Physics (HEP)
experimerts can be a tedious, ine cient and cumbersomechore. This
problem is very well known and mertioned by the experts in the eld, so
we want to tackle it in this thesis.

4.2 Time Consuming Querying Pro cess

o |
Code Result \J’isualizatiun

Send Code |

‘ Retrieve Data
1 Request Data |12

| \
: User | ‘ ‘
g | | |
Code Quary | ‘ ‘
Iz SendQuery | 3 oo ciData 4: Retrieve Data \ \
‘ | 5 Return Data | ‘ ‘
‘ ['e \ \
‘ ::l Compute Guery } }
\
‘ \ |
& Inform Query|ending | |
PR ——
\ \
\ \
\
\

13 Retum Data

14:
\—‘ Compute Result set ‘
‘ \

Present Result

|
|
|
|
|
|
|
|
|
| 7. Store Result |
|
|
|
|
|
|
|
I
|
|

|
[
16: |
|
1

Decide if turn back to 1 or stop

Figure 4.1: Sequencesf query steps

If wetry to track productivity bottlenedks and, consequetty, propose
changesto improve the situation, we should look at the whole analysis
processand understand which parts are more time consuming. This way
the weaknessesan be more easily pinpointed.

We usethe term end-userfor both normal and expert users,which are
referredto in the last section.

40 CHAPTER 4. PROBLEM STATEMENT

Giving an overview of the analysissteps, we can roughly depict a se-
guenceprocesslike in Fig.4.1. We can obsene that the time spent on
this activity changeswidely becausethere are so many di erent stepsin-
volved. The total time spent on analysisdependson the complexity of the
query, the experienceof the end userin programming, the programming
ernvironment and the executionof the analysisframeworks.

From the end user's perspective the total time spent consistsof:

time spert learning the programming language- rangeswidely, de-
pending on the user, but our experienceshaws that this tends to
take betweenl to 3 morths;

time spert with the analysisframework - usually, a morth is neces-
sary;

time spert programming the complete query - rangesfrom taking
three days to two weeks;

time for debugging syntax errors and semaiic errors (bad algo-
rithms) - somehours or somedays.

The rst and secondestimation can only be applied to the normal
physicist, sincethe expert should spend time closeto 0. The third and
fourth estimation should be closeto the lower bound for the expert users,
and closerto the upper bound for the normal physicist.

On the other hand, the system spendstime with storageand query
computation, depending on the size of the data set. In Hera-B, this used
to take from 3 hours up to three days. Additional time is spent with
the communication network, the data replication and the visualizing tool,
but, asthis is of no importance comparedto the size of the rest, we can
simply ignoreit. Although the user bearsthe responsibility for this, we
also considerthe time for the execution of ine cien t algorithms. Here,
time from three hours up to three days is lost becausethe result of the
query is always given at the end of the execution, and the userdoesnot
have accesdo intermediate resultsto realizethe problem.

The direct conclusionfrom this is that there is too much responsibility
for the performanceof the systemon the user'sside. With the state-of-the
art technologiesand methodologies,it is a very di cult and speculative
task to estimate how long it will take to run a query.

4.3. MOTIVATION FOR THE THESIS 41

4.3 Motiv ation for the Thesis

The presen situation is not satisfactory, especially with the growing com-
plexity of the HEP systemsand data storagerequiremerts.

Given the list of problemsdescrited, this motivates the introduction
of a solid design methodology. It provides the HEP comnunity with a
way to dewelop a robust solution where a exible query systemfor this
speci ¢ domainis produced. There wasno previousattempt to tackle this
problem, which constitutes a challenging motivation for this thesis.

The solution we seard should solve the major problem of the user,
lack of productivity, by simplifying the way he writes his queries. In other
words, the newapproadt shouldincreaseperformanceby reducingthe bur-
denof the userof being responsiblefor the optimization, it shouldimprove
the learning curve,it should reducethe error generationrate without los-
ing exibilit y and expressieness,and, nally, it should reducethe query
production time.

We can expect immediate bene ts from the required solution. The
framework that will be proposedwill sene as a guideline for future sys-
tematic studies on how to optimize e ciency of the systemand reduce
bottleneds in the analysis process. This way, dewelopers should have
a well-designedframework, where they are able to increasethe software
performance(with better e ciency), without interfering with the user's
activities.

4.4 Summary

Sciernists analyzing HEP data are often distracted from their real work
becausethey have to learn many details that are completely unrelated to
physics. Thus, the analysisof data generatedby detectorsin High Energy
Physics (HEP) experimerts can be a tedious, ine cien t and cumbersome
chore.

This meansthat they have the main responsibility for producing opti-
mized code for the analysistasks.

This problem is very well-known in the area. To our knowledge, until
now no real attempt has beenmadeto tackle the problem in a compre-
hensive and methodical manner.

The main highlights from this chapter can be summarizedas follows:

42 CHAPTER 4. PROBLEM STATEMENT

State of the art: Analysis too cumbersomeand ine cien t

Motivation for our work: Build a solution that introducesa method-
ology to increaseproductivity and performancein HEP data analy-
sis.

In the next part, we introduce somesoftware engineeringconceptsand
computer sciencetools that is usedthroughout the rest of the thesis.

Part |1

Preliminary Concepts

43

Chapter 5

Query Systems

5.1 Intro duction to Query Systems

In the previouspart of this thesiswe have explainedthe cortext of HEP
experimerts and the problem it is facing with the current solutions for
analyzing/mining their data. The needto increasethe user'sproductivity
motivates our intervertion in the traditional HEP query systems.

In order to understandwhat are the commonapproades,from Com-
puter Scienceand Software Engineer,that best t into our requiremers
we decidedto proceedwith a survey of the area. This helpsusto decide
on what conceptswe can reusefor our solution.

Generally we cande ne query systemsas facilities to processrequests
for information from a database. There are two ways to accesshe data:
programming languagesto write application programs, and query lan-
guages.

In many modern databasesystems,the userhasto make requestsfor
information in the form of a stylized query that must bewritten in a special
guery language.This languagecanbe usedto interactively interrogate the
databaseand retrieve useful information.

The userinteraction with the databaseincludesfour main tasks: shhema
de nition, query formulation, data update and data visualization. In this
chapter, we concertrate on surveying the di erent generalapproadesto
the formulation of queries,and we will discussthe bene ts and drawbadks
of ead solution. We nish this chapter by detailing sometopics which
have to be taken into accourt when deweloping Visual Query Systems.

45

46 CHAPTER 5. QUERY SYSTEMS

5.2 Query Systems Taxonomy

| Visual Query Systems |

Interfaces

Browsers and Visualizers | i

i Visual [i
: Metaphorefs :

Languages

: Artificial

Sooaonoooaodhononoanconoanoocotboonososaonnanas

: GRS [:
2 : : PO IS P SX R IR ¥ :
,,,,,,,,,,,,,, I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 ? 1 1 1 1 I 1 1 1 1 T 1 1 1 1 I 1 1 1 1

1970 1975 1980 1985 1990 1995 2000

©

Figure 5.1: Categorization of existing query systemssince 1970

Varioustypesof query languageshave beendewloped to interact with
storage bases. In order to better understand the work already done in

the area,we have investigateda represetativ e set of query languagesand
categorizedthem by their paradigm.

Our proposedcategoriesghat we will further detail in the next sections
are:

Textual languages:

{ Natural Languagesknown by everybody)

{ Articial languages(learh and known by specialists):
Pure textual languages.

Textual languageswith graphical result

Non-textual languages:

5.2. QUERY SYSTEMS TAXONOMY 47

{ Tabular languages:

Skeleton
Form

{ Graphical languages
{ Visual basedlanguagegmetaphor based)
{ Hybrid

Visual databaseinterfaces

In Fig.5.1 we categorizesomeexamplesof query systems. This chart
is not exhaustive, for instance, we do not specify XML languagesand
we alsodo not mertion languagesdeweloped from 19980on. Newertheless,
we considertheselanguagesto be already represerativ e of the di erent
categoriesproposed.

In order to be ableto comparethe di erent alternativesof query sys-
tems, when analyzing them, we will take particular attention to the fol-
lowing basecomparisoncriterias:

Expressieness- Is the able to produce complexqueries?

Easyto learn - How fast is the userable to start usingthe language
in its plenitude?

Syntax error free - How easyis it to produce synax errors? (e.g.
misspelling)

Semartics error free - How easyis it to produce queriesthat do not
do what the userthinks it does?

Small conceptualdistance-How closeare the represetation of the
data entities, languageprimitiv esand their manipulation to the way
the user conceptualizeshem? Doesthe languageforce the userto
think about this aspectsin a di erent way that he had conceptual-
ized them?

Memorizable- Can the user easily remenber the languagesynax?

Easy to use- Doesthe user gets confusedwith the languagewhile
usingit?

48 CHAPTER 5. QUERY SYSTEMS

Non-ambiguous- Can a query have multiple interpretations for the
user?

Formalizable- Can we formally expressthe language'ssemarics?

A summary of all this characteristicsaccordingto the di erent query
systemscan be found by the end of this chapter in table 5.5.

5.2.1 Textual Query Languages

Textual query languagescan be either natural or arti cial.

Natural Query Languages

The natural query systemallows the userto accessnformation storedin
a databaseby requestsin somenatural language(text through keyboard
input and/or voice recognition). An interesting description can be found
in [16].

Advantages:

There are no arti cial languagesto learn (becausequeriesare for-
mulated in user'snative language).

Theselanguagesare better for somequestions(negationsand quan-
ti cations).

The context of the dialogueis supported.
Disadvantages:

Linguistic coverageis not obvious and is hard to remenber.

Linguistic hasoften conceptualfailures, meaningthat there area lot
of ambiguities still to resohe.

The userassumesntelligence.
Theselanguagesusually imply a tedious con guration.

The computeris an inappropriate mediumfor this kind of languages.

The state of the art in this eld is a great deal of R&D in someareas
(e.g. dictionaries, parsing, etc.). But sciertists still do not agreeon a
commontheory or technique for this area.

5.2. QUERY SYSTEMS TAXONOMY 49

Articial Query Languages

Relational calculus can be consideredas a formal query languagebased
on mathematical logic, and queriesin this languagehave an intuitiv e and
precise meaning. Relational algebrais another formal query language,
basedon a collection of operators for manipulating relations, which is as
powerful asthe calculus[27].

Based on the relational algebra, there exist textual languageslike
the declarative languagesSQL, or QUEL, and the functional language
DAPLEX[86], etc.

Although OODBs exist already since1986[70], they got the rst query
language OQL[3], not until 1994. Deductive databasespn the other hand,
area conbination of a convertional databasecortaining facts, a knowledge
basecortaining rules, and an inferenceenginewhich allows the derivation
of information implied by the facts and rules. Commonly, the knowledge
baseis expressedn a subsetof rst-order logic languagedike Datalog.

In the category of arti cial query languageswe will also considerthe
extensionsto textual query languageswith visualization techniques(very
often usedfor geographicapplications). The query is described textually
and the systemretrievesits result setin visual format. Examplesof these
are: GEO-QUEL, Query-by-Picture Example (QPE)[26], PSQL, PROBE,
PICQUERY[64].

We do not considertextual query languageswith visualization tech-
niquesincluded into the interfacescategory (described later). The main
reasonis that while with the former languagesthe user can expressan
elaborated query, in the later category querieshave a xed simple pat-
tern (therefore are not very expressie).

Advantages:

Besidesthe formalization, one of the main advantages of textual
languagess the reducedambiguity.

Existing query languagedypically allow to work on the logical level,
but not on the conceptuallevel.

Disadvantages:

Theselanguagesely on the user'smemorization of their synax.

50 CHAPTER 5. QUERY SYSTEMS

5.2.2 Non-T extual Query Languages

Non-textual query languages,also called direct manipulation languages,
usually imply visual query systems(VQS). Those systemsmake use of
visual query languages(VQL) which expressthe requestvisually with a
set of de ned operators. Theselanguagesnake useof the visibility of the
objects of interest and their direct manipulation.

VQSstry to make it easyto deal with the logical model. They make
useof VQLs to get closerto the mertal model, which is a di cult task,
sinceat two dimensionsthe ambiguity increasegyreatly, comparedto the
one dimensionof text queries. In order to pursuethis goal, the language
shouldbe characterizedasfollows: it shouldbe clear (without many visual
objects), easilyreadable,simple,and unanmbiguous(from the point of view
of the interpretation by a computer program).

Presettly, there is a very active researti on visual query databases
for formalization, user-irteraction techniqguesand expressieness.In [25],
there is an exhaustive and systematic study of VQSsfor querying tradi-
tional databaseghat deal with alphanumeric data.

Generaladvantages:

There s lessdistancebetweenthe user'smertal model of reality and
the represemation of reality proposedby the computer.

The basicfunctionality of the interaction is easyto learn.

Highly e cient alsofor expert users,mainly becauseof the possibil-
ity of de ning new functions and features.

The rate of semarnic and syntactic errorsis signi cantly reduced.
Generaldisadwantages:

Theselanguagesare more di cult to design. A visual query might
not have a unique translation into a textual query.

They are moredi cult to implemert.

Sometypesof query languagesshov a lack of formalization, in con-
trast to textual query languages.

5.2. QUERY SYSTEMS TAXONOMY 51

As for textual query languagesput speci cally for visual languages,
systemsdealing with image data, non-structured text data, geo-
graphical data and physics data have di erent characteristics. The
systemmust dealwith the di erent kinds of data, and its data model,
in distinct ways.

A wide variety of visual query languageshave been studied over the
years,eat designedor a particular data model. For instance,we can nd
visual languagesfor speci ¢ applications like temporal databaseshyper-
text systems statistical databasesgeographicdatabasesyideo databases,
etc. Usually, the data thesesystemshave to deal with rangesfrom image
data, unstructured text data or geographicaldata to alphanumerical data,
eat having di erent characteristics.

In order to nd interesting properties we have categorizeddi erent
VQLs accordingto their similarities into: tabular languages,graphical-
basedlanguages metaphorsand hybrid languages.We will specify eah
of them in the rest of this section.

Very shortly, we can say that the rst successfulvisual query lan-
guageswere the tabular ones, basedon the relational data model and
ER modeling tools. The next generation of visual languagesto appear
were the graph-basedones,characterizedby their great expressie power
and their formalization strength. They were, howewer, awkward to use
since they were strictly bound to the logical model and did not try to
deal with the conceptualmodel. Graph-basedlanguagesusedboth rela-
tional and object-oriented models. Other generalvisual languageswere
the metaphor-basedhat dealt with the conceptualmodel but ladked the
exibilit y and formalization of graph-basedones,especially becauseof the
fact that they tend to be ambiguous. Finally, hybrid-based languages,
which use the object-oriented data model, tried to pick the best quali-
ties from the di erent approatesand are nowadays the most promising
languages.

Tabular Languages

They are consideredto be the rst visual query languagesthat brought
the conceptof user-friendlinessand exible queryinginto the ewolution of
arti cial textual languages.

CHAPTER 5. QUERY SYSTEMS

O plot query form O monument query form

o plot-number : O mt-number :
O owner-name : o name:

Output [_plot-number] O plot-address : O address:

n O geometry : INSIDE buffer(LINK-1,500) O geometry : LINK-1

Plot Historical-Monument O zones$C
plot-number zones | geometry geometry

O zone query form

n z gl g2 O zone-number :
o type: urban
O geometry :

Z z1:Zone Inside

type
z1 Trbarr gl | buffer(g2,500)|

(a) VQL[90], Skeleton-based (b) OOQBE[88], Form-based

Figure 5.2: Example of tabular languagesaken from [18].

Skeleton-bsal - Eadh relation is represeted by a two-dimensional
skeleton in which the column headingsshowv the namesof the rela-
tions and the namesof the attributes. The query is expressedoy
lling the skeletonswith a combination of variables, constaris and
keywords that give an exampleof the possibleanswer. An example
can be found in Fig.5.2(a).

Query-by-example[94] was oneof the rst attempts which analyzed
gueryingin a non-textual way (usedasa basisfor many commercial
database systems). It is very corvenient for simple queries, but
awkward for complexones. It supports transitive closure,which is
an extensionof relational query languages.Ilt hasbeenextendedto
deal with aggregatequeries.

Another formally de ned languageof this kind, VQL[90], makesuse
of di erent data models: relational, extendedrelational and object-
oriented.

Form-baseal - Seenasan ewlution of skeleton-basedanguagesmnak-
ing use of the multi-windowing technology Ead object type has
its own dedicatedwindow. In this window, the usercan seemerus
of commands,lists of prede ned constarts or merus of operations
just by clicking the mouseon buttons or icons. For a query, the
user lls out the forms of the related object types. An examplecan
be found in Fig.5.2(b).Examplesof this languagesare: G-WHIZ[77]
for the functional data model where recursive queriesare allowed,
OOQBE[88](Object oriented query by example),and PICQUERY +
[64].

5.2. QUERY SYSTEMS TAXONOMY 53

Advantages:

Generally theselanguagesare user-friendly (form-basedmore than
skeleton-based).It is more corveniert than just typing on the key-
board.

These languageshave lessthings to learn. It is not necessaryto
remenber the databasesdhema, and the useris aware at any point
how to navigate through it.

Disadvantages:

Complex querieshave an awkward represetation. Somejoin oper-
ations must be expressedy meansof variables,which is a sourceof
mistakes.

These languageshave very poor visual represetation of the data
model concepts.

Graph Query Languages

5

(@) Graph represen tation of a igh ts schedule database (b) Query of feasible igh t connections

Figure 5.3: Example of GraphLog [37].

Graphical query languagescorrespnd to queriesthat are actually
graphs (graph-theoretic perspective). It is basedon the use of synbols

54 CHAPTER 5. QUERY SYSTEMS

which represen the data model concepts. These synbols, sud as rect-
angles, circles and arrows, are pure graphical convertions without any
metaphorical power. As a consequencethey needto be explained and
memorized.

GQLs aremore suited to be formalized, given their precisemathemati-
cal structure (i.e., graph). This formalization makesit possibleto compare
them with other query languagesand to preciselyewaluate their expressie
power.

The databasesdiemais usually visualized by a graph where nodes
represen the objects and arrows the relations betweenthem. With their
knowledge acquired by schema browsing, end-usersexpresstheir query
following a mode which varieswith the consideredanguage:

The userbuilds a query graphin a separatewindow. This graphuses
the symbols of the databasesthema. The usercanalsousesomenew
convertions in order to visualize a selectionpredicate, for instance,
or to mark the elemeits which must be printed in the query result.

The user directly marks on the databasestema graph which el-
emerns are relevant for the query, and then he also usesdi erent
merus to to specify the selectioncriteria.

The majority of theselanguagess basedin the cortext of visualization
in deductive databases.The sematiics of the graphical primitiv esis given
as a translation to Datalog. Mostly, they were declarative and meart to
guery graphs. Examplesof theseare GOOD[58, GraphLog[37, Hyperlog,
VDM/VDL, VQL[72], G2QL[53, etc.

Other kinds of graph-basedlanguagesmake use of graphs purely for
specifying primitiv esthat canbe mappedto textual languagecommands.
The useof graphsis mostly related to the formalization power and, conse-
quertly, to the unambiguity that it provides. The semarics of the graph-
ical primitiv esis given asa translation of statemeris of an object-oriented
programming language supported by the underlying database. There
are se\eral examplesof this last type of graph-basedlanguagesquery-
ing both entit y-relationship and object-oriented models. Listing them we
nd: SNAP[22], QBD [17], QBD , VQL-MK[72], ERC[42, SNAP[22],
GQL[7€], that usethe functional querying paradigm.

Hygraphsare an extensionto the graph theory, incorporating blobsin
addition to edges.A blob relatesa cortaining node with a setof cortained

5.2. QUERY SYSTEMS TAXONOMY 55

nodes. It is possibleto assignsemairtics to the relationships represeted
by blobs. Someother conceptswere added through colored graphs (G-
Log[78]), where the body of the rule is colored red and the head green.
The samedirected labeled graphsare usedto represen databasesdhema
and instances. The nodes of the instance graphs stand for objects, and
the edgesindicate relationshipsbetweenvalues. Examplesof this type of
languagesare Hy+ [36] and G+[41].
Main advantages:

Theselanguagesare more formalizable.
They make better useof the visual medium than tabular languages.

Theselanguagesare powerful enoughto expresamorecomplexqueries
(transitiv e closure, recursionand computation of paths in directed
graphs).

It is a natural way of querying shemaintensive domains,wherewe
nd a large number of classesand many interrelationships between
them.

Main disadwantages:

Requiresexperiencedprogrammersto exploit its power, sinceit uses
of a lot of synmbols that are only graphical corventions.

The visual notation does not have a direct meaning, (a triangle
meanssomething that is de ned by the personthat designedthe
language). Instead, they have underlying conceptsthat are not per-
ceived in a metaphorical way.

They are costly to designand implemert.
Complex queriesvery easily becomeunreadable.
Theselanguagesneedto be explainedand memorized.

The semaric distancebetweenthe real world and the databaseuni-
verseis still too big for the normal end-user/non-programmer.

56 CHAPTER 5. QUERY SYSTEMS

CIGALES
Inclusion

© @ 4
Intersection E
@ g X
Adjacency

00O ¥ O

path distance

) [N 5

Figure 5.4: Cigales[79 Metaphor-based.Usesthe map metaphor. Exam-
ple taken from [18§].

Metaphor-based Visual Languages

This kind of visual languagesusesmetaphorsto shav the concepts. Meta-
phorstake the mertal model of the end-userinto accourt. An exampleof
theselanguagess VISTA[20], wherethe metaphoris a room with objects
to manipulate inside, or Cigales[79 (seeFig.5.4), represeting a map.
The way the userexpressesis query varieswidely and mainly depends
on the metaphor chosenby the languagedeweloper.
Advantages:

Theselanguage er anintuitiv eandincremenal view of the queries.
Disadvantages:

It is very dicult to nd an adequatemetaphor for a problemin a
given cortext.

There is no proper software engineeringmethodology to designsud
a language.

The risk of failing asa query languageis very high.

Very often, a multidisciplinary dewelopmen team (computer scien-
tists, psydologists, designersgetc.) is required.

5.2. QUERY SYSTEMS TAXONOMY

57

Usually theselanguageshave poor expressie power.

Very often theselanguagessu er from executionine ciency.

The systemmight have multiple interpretations for a query.

Theselanguageshave di culties to handle objects that do not nec-
essarily have a visual represetation (like arrays, lists, stadks, and
application-orierted data typeslike forms and documens).

The Hybrid Approac h

Selloolqey .

(select ¥_0.name from X¥_0 in Instructors where (fo'

rall ¥ 2 in ¥ 0

.teaches: [exists

¥_ 3 in ¥ _2.has p

b
I
£ |
rerequisites: ¥_3.name = ‘ecse5331°))) J
: | ¥
generate 0QL evaluate clear trace level=2
I~ i P
Comprehension Calculus Form: ;-S
- compr(bag, il
tag | Instructor project (X_0,name,string),
iterate(¥_0, Instructors),
HELI compriall,
Persistent Root <l Ll compr(some, 7
P Cowsa [|[ElE)__sms | r—
»| s [E]g] salaty | ﬂj Cowse sore. Cowese
Bl towwtes | 2|8l a0k I Elg| e |] g] ode | ==
.ﬂ e _ﬂ <l degress |] g e | E 5| — - : string.
— g ltereative locati | Bla| offed by | El6| offemdby | e jose5331
7| 6] publication tistox | BlE] ughiby | E|6| wuntby |
2| 5] dept P| 6| i prazequisits_fa | |G| i _prerequisita_fo |
ﬂﬂ teaches | ﬂﬂ has_prevequisites | ﬂﬂ bias_prezequisites !

Figure 5.5: Hybrid languageVOODOOI[5(Q (basedon OQL).

This category of languagesusesthe power of formalization of graphs
(de ning the abstract syrntax with them) and the concretesynax (mak-
ing useof combined meru-basedand simple metaphor-basedsolutions) to
reducethe mertal gap.

The underlying principle of thesesystemsis to provide a visual repre-
seration of the data residingwithin objects, and to o er visual operators
for navigating through related objects. In other words, there is a direct
correspndencebetween eatcy window and an object in the underlying

58 CHAPTER 5. QUERY SYSTEMS

database. Two kinds of interactions are usually supported by these ob-
ject browsers: navigation within a collection of objects, and navigation
betweenobjects by the way of their relationships.

In thesesystems,it is alsovery commonto usethe Iter ow metaphor
proposedin [84], wherethe water o wsthrough a seriesof pipesand lters
and eat lter lets through only the appropriate items. The layout of the
pipesindicatesthe relationshipsof _ and *.

Examples of these languagesare DOODLE [40], Kaleidoquery [74],
OdeView [2], VQL-VAD [90], SNAP [22], PASTA-3 [67], PESTO [23],
QUIVER [71], VOODOO [50].

Advantages:

The structure of the databaseclassesattributes and relationships
is readily available for the users.Usually, it is just \one click away"
from the layout.

For non-programmers,it is easyto memorizethe languageand to
learn the schema.

The way to dealwith Iter predicatesin the ow metaphoris close
to intuitiv e.

Designedto dealwith a generalpurposequery language,usually can
be mapped into object-oriented query languages.

5.2.3 Visual Database Interfaces

The main task of thesesystemsis to perform schemabrowsing, or result
visualization. They are in exible and are mostly tools for visualizing a
database,but do not cortain a formally de ned query language.

With this kind of system,the userscan accesshe information easily
and quickly without having to give an exact description of it or whereit
is stored in the database. There are four standard operations common
to theseapplications: structuring, Itering, panning, and zooming. This
meansa xed query pattern of selectedproject queries.

We can nd examplesof visual interfacesimplemerted on top of the re-
lational model to browsethe schema: CUPID[69], SDMS[60],GUIDE[93],
LID[52], ISIS[57, SKI[65], etc. As far as interfacesfor object-relational
models are concerned,w have: PBL+, DAA+ (on top of SUPER)[45],

5.3. BUILDING A VISUAL QUERY SYSTEM 59

DGJSA (on top of ODEVIEWI2]), PESTO[23, KIVIEW[73], LID[52],
etc.
Advantages:

Theselanguagesare easyto useand very good for occasional,unex-
periencedusers,with simple, repetitiv e requests.

The xed setof queries,with avery well-known query pattern, makes
the systemeasily optimizable.

Disadvantages:

Do not have a properly formulated query language. As a conse-
quence,it is not possibleto formulate complex, elaborated queries.

5.2.4 Summary of Features

A comparisonof all the mertioned query systemsis summarizedin Fig.5.5.
From that, we canconcludethat hybrid systemsmanageto gatherbene ts
from other visual languages. They are potentially the best approad for
deweloping a new languagefor non-experts on programming. They can
can be learnedquickly and have reducederror rates. As we will seein the
following chapters, we have taken theseconsiderationsinto accourt when
deweloping our own solution.

5.3 Building a Visual Query System

After we have decidedthe type of query systemthat is more appropriate
to our goals,we now have to considerthe implications on its designand
dewelopmer.

A VQS hasthe samegoalasany user-irterfaceapplication: it is meart
to simplify the user-systeninteraction. A VQSincludesa VQL and a vari-
ety of functionalities to facilitate man-madine interactions. When build-
ing sudh a system, three major topics must be covered: sdhema display
and navigation, query creation and result visualization, query optimiza-
tion and ewvaluation.

CHAPTER 5. QUERY SYSTEMS

60

Textual Visual
Nafural | Articial | Tahular | Graphical | Metaphor | Hybrid | Interfaces

Expressie T = = d >
Easyto learn P p p
Syrtax error Free P P P p p
Semattics error Free P P p
Small Conceptualdistance P P P
Memorizable P p P
Easyto use P p p
Non-Ambigous b P P P p

Y p Y Y

Formalizable

Table 5.1: Query languagescomparison

5.4. SUMMARY 61

5.3.1 The Visual Language

For the dewelopmen of an e ectiv e languagefor visual interaction with a
complexknowledgebase,there are four major requiremens:

There should be given a set of visual languageprimitiv es, i.e. a set
of graphical iconsthat constitute the alphabet of the language.

With this language,it must be possiblefor the userto easilyconbine
the primitiv esin di erent ways to createvalid queries. This means
that a syntax and grammar for conbining various visual primitiv es
hasto be speci ed.

Special symbols have to be designedwhich represen query targets,
databasevariablesand logical constrairs.

For easeof conceptualvisualization, it is necessarythat the visual
guery languagedeweloped for a particular data model consists of
primitiv esthat conceptually (and visually) parallel the schemarep-
resenation medanism.

5.3.2 Human Factors

VQSsare part of a special subsetof user interfaces. This meansthat an
human-cenric dewelopmert of the software must be usedwhile deweloping
them. The emphasisshould be on the user comfort, by providing an
accessiblanterface, and on its usability.

The languagedesignershouldalways designthe languagewith a strong
user'sfeedbag, trying to understandhow the tool is goingto be perceiwed,
learned,and mastered. In order to achieve a successfusystem,the future
usersmust be properly classi ed into the di erent kinds of possiblecat-
egories,and their speci c requiremens identied. The engineeringlife
cycle must include a proper validation of the languagethrough usability
ewvaluation tests. This topic will be deeplydiscussedn chapter 10, which
is dedicatedto the ewaluation of our proposedlanguage.

5.4 Summary

VQLs exist to make it easierfor the end-userto deal with the database
systems.

62 CHAPTER 5. QUERY SYSTEMS

The main ideaswe wart to take from this sectionis that hybrid visual
guery languagesare bene cial comparedto others:

They reducethe needto previously know the databasesdema, at-
tributes and relationship structure before writing the query. This
meansa short learning phase.

They reducethe problem of semartic and syntactic errors, meaning
better productivity.

They get much closerto the mental model than other languages.

Chapter 6

Domain Specic Mo deling

In chapters 2 and 4 we have obsened that one of the reasonsfor the
problem we have in hands, with the physics data analysis, is the lack of
abstraction layers. In addition to that, the solution of providing the end
user with a general purposelanguageis problematic for seeral already
discussedeasons.In Software Engineering,one solution for this kinds of
problems, when the user hasto dewlop his own software products (and
probably is not skilled enough),but we want to increasehis productivity, is
to make useof the conceptof Domain Engineeringand dewelop a Domain
Speci ¢ Language.

In section 6.1 we start by giving an introduction to the generalidea
of Domain Engineering. Then, in section 6.2, we proceedby giving an
overview of the modeling strategy required. Following that, in section
6.3, we shortly discussthe engineeringprocessand in section6.4 we high-
light the advantagesand disadwantagesof domain speci ¢ languages.We
nalize with section6.5 by observingsolutionsin HEP that, although un-
structured, could be consideredo beremotelyrelatedto domain modeling
but that did not leadto any learnedlessons.

6.1 Intro duction to Domain Specicit y

In orderto cope with marketsthat ewlve at a rapid pace,whereit is nec-
essaryto bring solutionsto market quickly and to constartly dewelop new
software products, a proceduredi erent from the corverntional software
engineeringmethods is necessary

63

64 CHAPTER 6. DOMAIN SPECIFIC MODELING

Domain engineeringapproatesthe problem by increasingthe acces-
sibility of the information systems,giving the end-usersthe opportunity
to dewlop programs. This can only be achieved by raising the level of
abstraction, making common parts explicit, and, at the sametime, lim-
iting the possibledesign spaceto a single range of products. In other
words, it de nes a family of applications (instead of deweloping products
individually) and a production facility (Domain Speci ¢ LanguageDSL,
generators,tools). The models generatedare made up of elemeits repre-
sening things that are part of the domain world, not the code world.

The direct consequencef this is that lesstraining is requiredto usea
processwhich speedsup the software developmen processconsiderably

Family-speci ¢ modelinglanguagesnake product familiesexplicit, shift
the abstraction level from designsto the product conceptlevel, and al-
low for a fast and automated variant generation. The languagefollows
the domain abstractionsand sematrtics, allowing dewelopersto work with
conceptsin their particular domain.

DSLs stand in cortrast to general purpose languages(GPL). While
the rst arededicatedto a particular domain or problem, being small and
usually declarative, the secondcan be usedgenerally for a wide eld of
solutions, using imperative, functional or object-oriernted styles. A GPL
is usually suboptimal for speci ¢ applications, esgecially whereit is used
by peoplenot trained as software engineers.

We can nd implemenations of domain-speci ¢ languagesin areas
sudh as robot cortrol [39], VLSI design[19], CASE tools [85, and GIS
[80. To our knowledge,no DSVL existsfor the analysisof data collected
in physicsexperimerts, or other HEP purposes.An interesting summary
and invertory of referencedo DSLs can be found in [91].

6.2 Mo deling Strategy

Domain-speci ¢ modeling works on the problem level instead of the so-
lution level. This meansthat models are made of elemens represeting
things that are part of the domain world and not the code world. It is
meart to automate a large portion of software production.

As de ned by OMG[75], Domain-madeling engineeringexploits a four-
layer meta-data architecture (seeFig.6.1):

6.2. MODELING STRATEGY 65

Meta Meta Model - Domain Meta Modeler

|

Meta Model B E— Domain Modeler

N
\

B

nEn

Model

Developer

!

Object/ Code

Figure 6.1: Domain-speci ¢ dewelopmern

Meta-meta-mo deling layer - Is the de nition of atool that sup-
ports the domain-sgeci ¢ languagemodeling.

Meta-mo deling layer - This featuresthe implemenation of the
domain-speci ¢ modeling language for instancea languagefor robot
control or for the generation of software for mobile phones. The
designtool for product families reducesthe costof creating domain-
speci ¢ toolsby allowing the domain expert, the domain modeler, to
specify the syntax and semairtics of a languagein the form of a meta-
model and by creating the supported family menbersautomatically.

Mo del layer - The domain user,deweloper, usesthe domain model
languageto specify his application using concept structures. This
meansthat the deweloper (or userof the DSL) is able to model the
family member. For example,the usermodelsthe newrobot cortrol
software for an automobile painting procedurein a new production
line, or the new cortrol software for the new mobile hardware.

Object layer (or Instance layer) - This layer represets the au-
tomatic code generation. This implies the existenceof a domain-
speci ¢ componernt library, and, of course,the automatic code gen-

66 CHAPTER 6. DOMAIN SPECIFIC MODELING

erator. The model speci ed is mapped to code that calls the com-
ponerts.

Domain modeling shouldnot be confusedwith modeling languagedike
UML, sincethoseare basedon code structures and make useof semaitic
conceptsof programminglanguages.The usersusually have to make error
prone mapping of domain conceptsinto UML and then to program code,
which requiresa good knowledgeof software engineering.

6.3 DSL Engineering Pro cess

During the analysisphaseof the developmert of adomainspeci ¢ language
we must idertify the problemdomain, gatherall relevant knowledgein this
domain and cluster this knowledge.

After this preliminary analysis,we must proceedwith the family- ori-
erted software dewelopmen. This entails de ning the family with its ter-
minology, commonalities and variabilities. A good introduction to the
family analysisand the de nition processcan be found in [38]. Basically,
we identify and use the abstractions that are commonto all known, or
predicted, family menbers, and we structure the designto allow changes.
Sourcesf abstraction are the terminology usedto descrike the family and
assumptionsthat aretrue for all family memnbers. To identify the scope of
the family, the analysismust include predictions of how family memnbers
will vary.

Implemertation usually involves constructing a library that imple-
merts the semaric notions. In the following, we build a compiler that
translates DSL into a sequenceof library calls.

6.4 Adv antages and Disadv antages

From [89], comparingthe bene ts of DSLs over GPLs, we have:

Familiar programnotation - DSL usedomain notations, which makes
the languagemore readable,and its speci cation more accessibleo
the domain users(normally non-programmers).

6.4. ADVANTAGES AND DISADVANTAGES 67

Designreuse- The user has a well-de ned path to dewelop his ap-
plication. This is corveniert sincethe code needsto be tested only
once.

High-level abstraction - The usersdealswith constructsat a higher
level of abstraction. This way the user doesnot have to deal with
error-prone and low-level implemertation details. As always, more
levels of abstraction reducecomplexity, shorteningthe dewelopmern
and the testing phase.

Clear conciseprogram speci cation - program speci cations can be
by big factors smaller than the correspnding speci cation in the
GPL.

Program cheding - As a result of using a restricted language,it is
possibleto catch somesemartic errors which cannot be caugh by
with a GPL compiler.

E cien t execution- DSL programscan have at least the sameper-
formanceasin commongeneralpurposelanguages.

Reducestime and e ort drastically - Thereis a payo at the dewel-
opmen and production of family menbers. DSLs enhanceproduc-
tivit y, reliability, maintainability and portabilit y.

In addition to this list, we can say that the target code, asit is au-
tomatically generated,doesnot cortain syntax and logic errors. This is
determined by the semaric and modeling rules captured in the meta-
model.

The obvious drawbadks of this approad are mainly related to the fact
that DSLs are dicult and costly to build, sinceead requiresits own
signi cant designand dewelopmen e ort, and eat domain supported by
atool is speci ¢ to a certain type of problem (limited marketing).

DSLs can only be deweloped with the involvemen of experts in the
speci ¢ eld that they weredeweloped to, sincein most casesthe domain
is very complex. This dewelopmern is only justi ed if it canbe expectedto
generatea number of family products. Thus, the deweloper must evaluate
and balancethe costsof designingeadt tool from scratch or usinga DSL.

As stated in [38], the succesglependson how well the software engi-
neerscan predict which family menbers will be needed. The concept of

68 CHAPTER 6. DOMAIN SPECIFIC MODELING

family menber is not well formalized, there are no rules that enableengi-
neersto identify families easily the prediction of variations is di cult and
implies spending time for family analysisduring the dewelopmen process.

6.5 DSL \A ttempts" in HEP

In order to avoid to \redo the wheel", we had to determineif any domain
speci ¢ approat hasbeentaken beforein HEP analysis.

We have obsenedthat Analysisframeworkslike ROOT[81], speci cally
designedor this domain, do not hide the internal complexity of the library
of functions from the query code programmedmaking useof a GPL object-
oriented programming language(C++). With time, the libraries become
larger and more generic. The consequencés that the usability decreases
becauseof the multiplicit y of ertry points, parametersand options o ered.

From our researb we alsofound out that someexperimerts which tried
to reducethe problem of the generalpurposeapproad), have used rudi-
mertal textual domain- speci c commands. We have KAL in the exper-
iment ARGUS/DESY[5] (from the early 90s),or "Z in ZEUS/DESY[29]
(from the late 90sand early 00), or evren ATGEN in ATLAS/CERN[34]
(still being built). This shows that the question of how to improve the
user's productivity in HEP is already standing for long, and dewelopers
have beentrying to answer it. Unfortunately, almost no documertation
has beenwritten about them, and we can not proceedwith a thorough
ewvaluation of them. Sincethey had no methodological approad like the
de nition of the objects and their operators with the help of an alphabet
and a grammar, we cannot call them languages.They are just collections
of somecommoncommands,with no formal speci cation. They werevery
in exible and con ned to the scope of the experimerts where they were
deweloped, and did not lead to their standardization. The main reason
of this is that the abstraction was weak. The positive cortribution of
thesetools wasto help gathering domain-sgeci ¢ functions in componert
libraries.

We concludethat introducing a structured domain speci ¢ language
in this HEP can be consideredto be a pioneeridea.

6.6. SUMMARY 69

6.6 Summary

Domain-speci ¢ engineeringnethodology comesnto play whena family of
applicationshasto be deweloped by usersthat are not necessarilysoftware
engineers,n a speci ¢ domain. It focuseson generatinga languagethat
givesthe userthe possibility to certer on what to compute in opposition
to how to compute, sothat he doesnot needto be a skilled programmer.
The dewelopmen of a DSL reducestime and cost involved in the de-
velopment and modi cation of a family of toolsin a certain domain.

70

CHAPTER 6. DOMAIN SPECIFIC MODELING

Part |11

Tackling the Problem

71

Chapter 7

The Solution

In this chapter we presen our proposalfor solving the problem of lack of
productivity in HEP analysis,already descrited in chapter 4.

Our hypothesis,explainedin section7.1, is that we cansolve the prob-
lem by deweloping a Domain Speci ¢ Visual Query Language. In section
7.2 we give argumernts to support this idea. In section7.3 we de ne what
we expect to obtain asresult of a deweloped solution. Finally, we sketch
the servicesoverview of the required system7.3.1.

7.1 Prop osed Approac h

The usualway how we can simplify a user'sinteraction with a systemand
make it more exible for incorporating changesis to introduce di erent
layers of abstraction. In the ideal case,we want to be able to abstract
the user's point of view (conceptual layer) from the data represetation
(logical layer) and this, in turn, from the actual data storage (physical
layer).

In order to raisethe abstraction levels, increaseproductivity and give
experts a clear architecture where it is more easyincreasee ciency by
tracking new points of optimization in the analysisquery system,we pro-
poseto introduce a properly de ned declarative visual query language
(and system) speci ¢ to the HEP domain, by meansof an adequatede-
velopmen process.

We propose a unifying framework for analysis, called PHEASANT
(PHysicist's EAsy ANalysis Tool), that distinguishesbetweenthe concep-

73

74 CHAPTER 7. THE SOLUTION

X

VQL
Pheasant|

91‘92‘93‘94‘95
~

Fortran C++ C,C++,Fortral C++ SQL

relational
PAW ROOT ARTE BEE database

Figure 7.1: Unifying framework - The user views his particular analysis
framework in the sameway as others.

tual, logical, and the physical layer of the data and preselits the sameview
to the userfor eat analysisframework he is working with. At the con-
ceptual level, this framework featuresthe rst declarative domain-sygci ¢
visual query language(DSVQL) for HEP analysiscalled PHEASANT QL
in which physicists are enabledto construct queriesusing familiar con-
cepts, opening up a new application area. If it is not necessaryto know
implemenation details or certain programmingskills, it is much easierfor
a userto becomeacquairted with the framework.

At the logical level, we provide a more detailed represetation of the
data in form of a logical shema. Howe\er, this represemation still hides
implemertation details. The visual languagequeriesare mapped onto an
algebrawhich operateson the logical schema.

At the physical level, di erent (existing) tools can be pluggedinto our
framework via code generationmodules (represened by g in Fig.7.1). A
code generation module translates the algebraic form of the query into
the appropriate syntax of the correspnding tool. This way, if the query
primitiv es do not change, dewelopers may introduce changesin the core
technology, storagelayer, physical model and physical algorithms without
a ecting the user. With a proper abstraction designthe framework can
be extendedwrapping around new tools (lik e histogramsgenerators)in a
quite elegan way.

7.2. WHY A DSVQL? 75

7.2 Why a DSV QL?

The conceptof a domain-sgeci ¢ visual query language(DSVQL) gath-
ers seweral other conceptsand their qualities into one: visual query lan-
guagesgdeclarative languagesand domain speci city. The seeral bene ts
discussedn the previoussecondpart of this thesisjustify the combination
of them to derive the solution.

In fact, the languageshould be domain-sgeci ¢ becausein this com-
plex domain, where usershave to code their querieshundredsof times to
completean investigation, it is justi ed to dewelop a solution that gathers
the patterns and data objects into the user's conceptual notions of the
domain, and automate the generationof query code. Obviously, a fam-
ily of products has commonalitiesthat can be exploredto perform code
reuse. Moreover, the physicscomnunity is usually not trained in software
engineering. Automating the generation of code releasesthe burden of
writing it. In fact, generalpurposelanguages(GPL) have showvn to be
dicult for the userin this domain.

We suggestthat the languageshould be declarative, since the user
bene ts from the fact that no programminglogic is involved. As we have
seenbeforein chapter 5, it should also be visual sinceit is easierto use
and learn, and reducesthe error rate.

7.3 Exp ected Results

By introducing the DSVQL, we expect to improve the user's productiv-
ity. This is the immediate result of introducing clear abstraction layers.
Furthermore, it helpshiding details of storageand e ciency.

An commonly acceptedquery languagefor the domain will be ben-
e cial to the end-user. The physicists non-exgerts in programming will
no longer have to cope with di erent languagesin di erent experimerts.
They will get no more error-pronemappingsto other languages.As a con-
sequencejt can be expectedthat they will learn the systemand design
their queriesmore quickly.

On the other hand, expert users,beingusedto had their systems,will
have an extra tool to speedup their analysis,without necessarilyloosing
expressie power.

Finally, dewelopers of analysis frameworks will have a system with

76 CHAPTER 7. THE SOLUTION

properly isolated modular levels at their disposal. This improved archi-
tecture will give them plenty of room for system e ciency and design
improvemerns with the extra bene t that producedchangesdo not a ect
the rest of the modulesand, in consequencethe rest of the analysischain.
The users,hopefully, will not realizethe changes,exceptfor the increased
e ciency of the system. This meansthat they do not needto changetheir
guery in order to cope with a new systeminterface.

7.3.1 System Overview

In Fig.7.2we sketch the generalservicesof the systemwe want to dewelop.

Meta Model

Language Descriptignfe———— Language Developer
Specific Data Model —))
Library Components ~ Experiment Design Expert

Meta Data O

Model -
Description Query Model —
User

Query
Description

Target Code

:

Figure 7.2: Systemservices

The deweloped system provides facilities for specifying the visual lan-
guagemeta-madel. This modeling is done by two actors: the language
deweloper, responsible for describingthe language(and that might want
to extend the language),and the Experimert Designexpert, responsible
for specifying the data model and the library of functions available to the
physicist.

At the physicist (user) modeling level, the systemprovidesthe hybrid
visual query language,whoseoperators were de ned at the meta-madel
level, with characteristicssimilar to what wasalready descriked in chapter

7.4. SUMMARY 77

5. This languageraisesthe level of abstraction in sud a way that the end
users can ignore the implemenation of the frameworks and can share
their queries (i.e. have a way to talk about the speci cation of their
guerieswithout having to go deeplyinto the details of the programming
ervironmert).

Oncethe query is modeled by the physicist, the systemwill generate
the target sourcecode, that runs on the target analysisframework.

In order to cope with the domain adaptability and ewlution of both
the data schemaand the library of componerts, we proposeto usea meta-
data system(in Fig.7.2represeted at the bottom left sidecortaining grey
boxes)that dealswith the versionsof the di erent query models (keeping
track of what versionsmake a given query valid), the user history, and
with the data and componernt library elemeits. This conceptwill not be
studied in this thesis, but we proposeit asfuture work instead.

In the following chapters, we will descrite how we have deweloped a
language (PHEASANT QL) and a prototype of a framework (PHEAS-
ANT) that meetsthe requiremerts.

7.4 Summary

In orderto answer the questionof how to dewelop a systematicapproad to
improve the analysis'framework performanceby increasingthe user'spro-
ductivity? We proposethe introduction of a declarative domain-speci c
visual query language. This should be implemented by a unifying frame-
work.

We proposea DSVQL asa way to:

Raisethe abstraction level
Modularize the architecture
Structure the points of optimization

[t T et W et W e |

Have a more usable interface, sinceit is closeto the user's
concepts

Why declarative?

{ The userstatesthe problem and not the solution

78 CHAPTER 7. THE SOLUTION

Why visual?
{ More intuitiv e and easyto useand learn
{ Helpsreducingthe error rate

Why domain speci c?

{ The query languagedealswith the physicist's concepts.
{ GPLs aredicult for the userin this domain

The next chapters, are dedicatedto descrite the designand dewelop-
mert of the solution. In chapter 8 we formally de ne the new language,
calledPHEASANT QL, andin chapter 9 we descrike the prototype frame-
work that implemerts it.

Chapter 8

Query Language -
PHEASANT QL

We dedicatethis chapter to the completedescription of the new PHEAS-
ANT Query Language.The syntax and the semairtics of the languageare
detailed.

8.1 Intro duction

Any query languageshould be speci ed by meansof a formal syntax and
semairiics. This approad is bene cial since then we are forced to de-
velop both major conceptsof the languageand the details, leadingto a
correct implementation. Additionally, the user has a unique and clearly
determined sematics for any seriencein the language.

The syntax of a languageis a setof rulesthat de ne the ways synbols
may be conmbined to create well-formed sertencesin that language. The
semairtics, on the other hand, dealswith the meaningof programs,i.e.
how they behave when executedon computers.

In this chapter we descrile both syntax and semairtics of the newly pro-
posedquery language,PHEASANT QL[10, 9]. We start by summarizing
someconceptsof languagespeci cation. Then, we introduce the syntax
with the notation and alphabet of our proposedianguage motivating them
with the user's conceptual layer of this speci c domain. After that, we
specify the semarnics of the language,making useof translational seman-
tics. In other words, we de ne the semarics of our languageby mapping

79

80 CHAPTER 8. QUERY LANGUAGE - PHEASANT QL

it into our own Algebra (someof the operators were basedon the work of
[51)).

8.2 Syntax

Commonly, the syrntax de nition of a languageis a formalization of its
internal structure, called grammar, that lists the synmbols for building
words, the word structure, the structure of well-formed phrasesand the
serience structures. This structure is often formally de ned by using a
notation known asBadkus-Naur Form (BNF). This BNF de nition is a set
of rules where the left-hand side is a non-terminal, also called structural
type. The right-hand sideis composedusing both terminal symbols and
non-terminalsthat de ne the structure of the non-terminal symbol at the
left-hand side. When describingthe grammar of PHEASANT QL in 8.2.4,
we will have the chanceof detailing this subject more deeply

8.2.1 Concrete versus Abstract Syntax

Concretesyrntax establisheghe concretevisual represetation of language
elemelts, de ning that a certain ertit y should be represeted by a speci c

geometricshape, de ning the layout and spatial relationships. In visual
guerylanguagesthis is a subject important for the eld visual parsing[92],
sinceit studiesthe recognition of concretesyrntax elemens. The result
of the interpretation of theserules is usually a spatial relationship graph
(SRG). This graphwill be mappedinto an Abstract Syntax Graph (ASG),

which cortains only the logical structure, abstracting concretedetails like
distances,shapes, sizes,etc. In this chapter, our languagewill be de ned

by meansof the Abstract Notation.

8.2.2 Overview of PHEASANT QL

The user'sconceptualview of PHEASANT is basedon the stream of ob-
jects owing through four major steps. This view, aswe are explainingin
this section,motivatesthe designof a speci ¢ language'svisual syntax for
this domain. The underlying logical schemaand manipulation of the data
is detailed in the section8.3.1, where we descrike the semaric mapping
of this language.

8.2. SYNTAX 81

When specifying a query, the user hasto go through four sequetial
steps, where one feedsthe next. Although they are not linked visually,
the usermentally connectsthe steps' ow. It starts with the operatorsfor
data collection, meaning ltering speci ed setsof Eventobjects, which will
"feed" the rest of the query operators and, consequetty, the rest of the
query steps. The omissionof these operators will assumethat all Event
objects from the universeof the stored everts will be chosen.

As a secondstep, the set of Eventsselectedwill be ltered out by the
user's lter predicateson the Eventattributes. This reducedsetof Events
will sene asinput to the third query step of reconstructionand lItering
of speci ed decas. If the Evert Iter operatorsare omitted, all the evert
objects are selectedfrom the previousstep.

The query descriled in the third steplooksat the data objects (Parti-
clesand Vertexes)assaiated with ead Evert and extracts a setof Decays
for ead of them. For the user, a Decay is a set of related particles, ver-
texesand objects newly generatedas the result of the description of the
declarative query.

The result of this step, the set of Decays will ow to the target oper-
ators of the fourth and last step wherethe result operators are speci ed.
The user will get as a result from his query a Histogram, a value of a
Basic_type (meaning Float or Integer), or, if a result operator is missing,
a set of Decaysto \feed" other analysistools.

In the next informal description of the user perspective of the frame-
work, we usethe notation f Eventg to meana set of Events and f Decayg
to meana set of Decays

8.2.3 PHEASANT QL Alphab et - Symbolic Nota-
tion

In this section,we introducethe basicbuilding blocks or visual operators
of our languagewith the help of a running example. We baseit on the
qguery presened in Fig.2.1. In someof the operators we introduce, we
have assaiated with them a secondlevel (indirectly visual) of textual
description of parameterslike a list of attributes and Iter predicates(in
a looseapproximation this meansa projection of a set of attributes and
a selectionbasedon a Iter predicate in the relational approad). For
the full understandingof theseoperatorsat the logical level and how they

82 CHAPTER 8. QUERY LANGUAGE - PHEASANT QL

T D

.
AR

ﬂ

Figure 8.1: Example of a completequery: the D* decy

interact with ead other, we are going to descrike the grammar and the
formal semairtics in the following sections.

Fig.8.1 shows the complete query, where four major steps are inte-
grated in the visual query sertence.

Selecting Collections

]

Figure 8.2: Collecting the data in step 1

First of all, we have to decidewhich collection or collectionsof evert
data to use(e.g. Runs, private event collectionsetc.). This task of se-
lecting the collection objects according to a predicate criteria over the
properties of the referred collections, is performed by the collection op-
erator, which is represeted by a small disk symbol (seeFig.8.2). Let
us assumefor a momert that we are only interestedin the data from the

8.2. SYNTAX 83

third run. So,in a rst step,we have a collection operator that selectsthis
data for us. This synbol re ects the user'sperspective on the Collection
classertity that are interpreted as collection objects (like in the object-
oriented approad). Collections' Iter seriencescan be composedusing a
combination of these operators with standard set operators\ ;[, and n.
Fig.8.3 shaws the signaturesof the di erent collection operators.

The query descriked in this step selectsa subsetof the speci ed col-
lections. This is done by using a Iter predicate over the collection. Af-
terwards, the set of ewverts to which the selectedcollectionsrefer to are
united and passedto the next phase.

In our running example,we have the left operator in the upper part of
Fig.8.1 that tells the systemthat we are interestedin the data from the
third run. The list of attributes (hidden in the schema) s a set of proper-
ties of the run like frunid; quality ;itr ; otr;:::g, and the Iter predicates
would be for instancefrunid = 3”7 itr = true” otr = f alseg.

Collection
—collection
pred

Union

O] fEventg fEventg! fEventg
Intersection

® fEventg fEventg! fEventg
Di erence

O] fEventg fEventg! fEventg

I fEventg

Figure 8.3: Signature of the Collection PHEASANT Operators

Selecting Events

VY

Figure 8.4: Collecting the data in step 2

84 CHAPTER 8. QUERY LANGUAGE - PHEASANT QL

The secondstep involvesdealingwith the set of Everts resulting from
the rst step. Thosethat are collectedin the rst stepwill be Itered out
by predicateslike 'coasting beam=true' , or other arithmetic inequalities
with physics formulas that make use of the Event attributes (algebraic
expressiongoined by inequality synmbols like >; <; >=;<=;:::). This
way, a smaller subset of ewerts is selectedto feed the following steps.
Fig.8.5 shavs the Evert operator signature.

Event
?pred fEventg! fEventg

Figure 8.5: Signature of PHEASANT Operators for the Evert Itering

Selecting the Decay

O) @

Figure 8.6: Selection, Aggregation, Transformation, Transformation Re-
sult

For the third step, that is going to deal with the multivalued data
referencedby the Evert objects, we needfour more operators: Selection,
Aggregation, Transformation, and Transformation Result (seeFig.8.6 for
their symbols). At this step, the query dealswith the input data of one
ewvert at atime, dealingwith the objectsit is composedof. The resulting
setsof related objects, the decg, are handedover to the fourth query step.

From the perspective of the user,the Selectionoperator selectsactual
particles detected during these evernts to be added to the decg that is
going to be the input of the Result step. The operator Iters them ac-
cording to predicatesthat referto special particles' attributes, like having
‘mass > 0:4° In this step, the origin of the object ow starts at the
Selectionoperators that are leavesof the tree.

The Transformation and Aggregation operators work only on the re-
sults of Selectionoperators. Again, from the user's perspective, Trans-
formation combines the results of two (or more) selectionsaccordingto

8.2. SYNTAX 85

user-de ned lter predicates. Usually, this results in the construction of
a particle higher up in the decg chain (addedto the decay or decays of
the particular even). So the transformation operator createsnew par-
ticle objects with the data from previous selections. These new objects
are represeted with the Transformation Result operator, which we usea
symbol similar to the Selectionoperator, becauseboth of them descrite
the objects to be addedto the deca. From the computational point of
view, this correspndsto a join of the input object streams,followed by
an aggregationthat generatesa new object elemen in the deca through
some special user-de ned functions called vertexing (that compute the
attributes for the new particles).

An aggregationsums up information on particles per evert, i.e. we
get one result for ead event. It is a grouping of the decags by ewen
and a subsequen aggregation (using a user-de ned aggregatefunction
like D :max(mass)).

Now we needa way to connectthe objects. For this, we usea simple
line with an arrow that describes the data ow from one operator to

another.

080
o%0

Figure 8.7: A) ComparisonB) Minimal distance

B)

Our languagesupports two more primitiv esto relate the result of Se-
lection operators: the Comparisonand the Minimal Distance operators
(seeFig.8.7). Both of them relate the two di erent input streamsand
apply a selectionpredicate.

The rst one,the comparisonoperator, comparesa particular attribute
value of someobject from ead decgy (X) to thoseof the deca (Y) within

86 CHAPTER 8. QUERY LANGUAGE - PHEASANT QL

the sameEven. In doing so, it Iters out particles that do not satisfy
the condition of the comparisonoperator. It represets an algebraicjoin
under a condition predicate.

The secondcaseis the Minimal Distance operator. In cortrast to
the comparisonoperator, the minimum distance operator is directed. It
operatesin two modes: mandatory (computationally a join) and non-
mandatory (left-outer join), which are synmbolized by a solid and a broken
line, respectively. In both cases,the result is a pair of particles (X,Y).
The user can de ne a distance threshold for all particles in X that are
further away from Y to be Itered out. In this threshold, the userde nes
the limits within which the result of the distance function is valid, and
the resultis not Itered out. The rst mode (mandatory) meansthat all
particles in A are matched to the nearestparticle in B, and the pairs of
particles are returned. All particles in A which do not nd a matching
partner in B are Itered out. The secondmode (non-mandatory) is the
sameasthe rst exceptthat particles from A not nding a partner in B
are retained, i.e. theseparticles are paired with a empty value.

Finally, our running exampleof Fig.8.1 summarizesthe description of
our languageoperatorsfor this step. We beginon the right-hand sidewith
extracting all * and particles from the ewvents of the third run. With
the help of a transformation operator (T,), we reconstruct K particles.
Another transformation operator (T,) helpsusto nd D™ particles. One
condition operator was inserted which cortains the condition expression
that guararteesthat * and have the samemass. A minimal distance
operator is usedto selectthe PV (primary vertex in physicsjargon), that
is closerto the computedD* particle. If none exists, the decay chain is
discarded. Finally, an aggregationoperation lters out the particles with
the maximal energylevel for ead evert.

For the analysis,it might be interesting to get objects that are refer-
encedby somepatrticles, or vertexes,selectedn the deca (e.g. Particle!

M CParticle). It is even possiblethat the selectionof a given particle, or
vertex, is conditioned to the existenceof the object it is referring to.

We will use: Ce ©, to meanthat the particle, or vertex, is selected
and alsothe referencedobject if this last oneexists. The other possibility
is to useCe:::O, to meanthat the particle, or vertex, will be selectedif
and only if the correspnding referencedobject exists.

The di erent operators' signature can be consultedin Fig.8.8.

8.2. SYNTAX 87

Selection
Qhead:path |
pred fEventg! fDecayy
Transformation
Ogsgg f Decayy fDecayy! fDecay
Transformation Result
Qgreeag fDecayy! fDecayw
Aggregation
2func : | f
pred Decayg! fDecayy
func is the aggregatorfunction
Comparison
pred fDecayyg fDecayy! fDecay
Minimal distance
func |
pred fDecayg fDecayyg! fDecay

func is the minimal distance function

Figure 8.8: Signature of PHEASANT Operatorsin the deca description
step.

Selecting the Result

1D 2D 3D #

Figure 8.9: Speci cation of the result set:1D, 2D, 3D, Value result and
operator omission

Last but not least, we have to descrike how to visualize the result of
the query asthe fourth step. We provide four di erent operators for the
description of the result (seeFig.8.9 for the notation, and Fig.8.10 for
the correspnding signatures): three operators to create one-, two-, and
three-dimensionakhistograms,and oneoperator to output numeric values.
Theseoperatorswill basicallyapply a reduction on a certain user-sgeci ed

88 CHAPTER 8. QUERY LANGUAGE - PHEASANT QL

list of attributes over the decas that resulted from the previousstep.

In caseof the histogramsthey simply represem a resulting set of tuples
to which the framework should visually presen its result in the shape of
a histogram. A grouping criteria, alsouser-de ned, can be used.

In the caseof the numeric value operator, a user-de ned aggregation
function is speci ed to get a single result value. In caseof absenceof a
result operator(in this case we will represen it textually by ?), the result
can be usedto feedsomeother analysisframeworks, external to our own
one. In our running example,a 1D histogramis requestedas output from
the query result with the list of attributes f D" :massg.

Result 1D

head fDecayg! Histogram
Result 2D

head fDecayg! Histogram
Result 3D

head fDecayg! Histogram
Result Number

head fDecayg! Basic_Type
Omission
? fDecay! fDecay

Figure 8.10: Signature of PHEASANT's Result Operators

8.2. SYNTAX 89

8.2.4 Grammar

e - 7
<< @>>:=
<< @>> 1| ©
j<<@>> 1 ©

j<tE>> 1 o1 3
<< @>> = << O>> &
<< @>> = << @O>> G
=0 | o

=V

0j?

=0 @
<<O>> "= 0 0 <<O >>
0x=0 <<O >>
iO << @ >>
<O >> 1= <<0 >> 0
<<O >> =

<<O >> o O Ref erence
] <K<KC >> o!:! C Reference

-::=jjjj?

Figure 8.11: Context-sensitive graph grammar

In order to proceedwith the de nition of the syntax of our language,
we have to descrite how symbols may be formedinto valid phrasesof the
language.

90 CHAPTER 8. QUERY LANGUAGE - PHEASANT QL

Comparingour diagrammaticlanguageoperatorswith graphsand edges,
we make useof a graph grammarto de ne our visual query language(see
Fig.8.11). This grammar is cortext-sensitive sinceit allows the usageof
terminals and non-terminalsin the left-hand side,leadingto left and right
graphsof a production to have an arbitrary number of nodesand edges.
The left-hand siderepresets part of the graph structure that is goingto
be extendedin the right-hand side.

This grammarnotation, howewer beingusefulfor the implemertation of
the graphical parser,is not conveniert for semartic description purposes.
The graph structure leadsto complexalgorithms to interpret them. This
way, we must descrike the syntax notation making use of a BNF like
grammar, which is represeted inherertly by atree structure, the Abstract
Syntax Tree (AST). This meansthat we have to descrile the syntax at a
higher abstraction level. In practice, this implies to dealwith the concept
of comparisonoperators that are the elemens that closethe DAGs. We
break the structure by decouplingthem from the DAG, (which becomes
a tree). Thesecomparisons(predicates) are goingto be interpreted later
by the semarics medanism.

8.2. SYNTAX

.= aQCollection, QEvent ,QDecay, ,QResult,

a QCollectiony, ::= ?
j &
jaCollR ! CCOPP® CollR 4
jaCollR T NCOP® * ColR,
CCOP = ©
j®
NCOP = ©

a QEvent , ::= W%

a QDecay ::= Comparisons Decay

j Comparisons, Decyy ! [y
j a Decyy ::: b
j a Decay b
Comparisons::= Comparison Comparisons

J)?
Comparison::= Connectable e Connectable
Connectable::= O) © , Decay p, ::= SelOfect | , Tree

a SelOhbect, ::= O
j b0 @0,
JpOe Oy

a Tree p::= SelOhect
j aVertex ! o

a Vertex, = o(Tree 1) 0Oy

QResult ::= 10/ [20] j 3] j [#]j 2

Figure 8.12: PHEASANT's BNF-like grammar

91

92 CHAPTER 8. QUERY LANGUAGE - PHEASANT QL

PHEASANT QL's grammar consists of four parts < ;N;P;S >
where:

isthe nite setof terminal symbols, the alphabet of the language,
that are asserbled to make up the sertencesof the language. We
decidedto usethe synmbols of the languageitself as terminals in
the grammar, so there is no problem to recognizethe componerts
introducedin the last section.

N is a nite setof nonterminal symbols or syrtactic categories.ead
of which represetts somecollection of subphrasesof the serences.
In our description, non-terminals have a grayish badkground, while
for the terminals the regular badkground is used.

P are the production rules stated in Fig.8.12. They are represeted
asLH S ::= RH S where productions with the sameLHS (left hand
side) separatethe di erent RHSs(right-hand sides)by j. Both left
and right sidesare de ned in terms of terminal symbols and norter-
minals.

Sis the start symbol or null graph.

Let us give someextra explanatory notes. In our production rules, we
de ne a and b asconnectionpoints to the rest of the graph, and they are
usedto keepthe graph oriertation after applying the rule (which means
that the data ow goesfrom ato b). Whene\er the orientation is obvious,
we will not usethesecharactersfor readability purposes.

Asscaiated with ead operator is someadditional data, like attribute
lists and condition lists. During query construction, when using the user
interface, this information is hidden most of the time. Therefore, we
descrile this hidden data assaiated with eat operator with the symbol
../ (seeFig.8.13).

Furthermore, we distinguish between two di erent collection types:
run collectionsand event collections. When no collection operators are
given in a query, it considersall available data. If a run collection op-
erator is given without an ewert, only data from the runs that match
the selected Iter conditions speci ed in that operator will be considered.
We can further restrict this by additionally supplying a description of an
ewvert collection operator. Then only a subsetof the events of the chosen

8.2. SYNTAX 93

runs selectedby the run collection operator will be taken into accour.
When specifying an evert collection operator without specifying any run
collection operator, we regard the relevant events from all runs .

When connectingcollection operators via set operators, the grammar
di erentiates between commutative operators, CCOP ([, \), and non-
commutativ e operators, NCOP (n).

The languagehas been designedconsideringthe need of the userto
extend the expressionsconditions and transformation functions with his
own ones(otherwise, it would be very restrictive). We will make use of
the terms UDF[68], which stands for set of user-de ned functions, the
correspnding subsetsare: UDSFs (user de ned scalarfunctions with the

signature: Float Float! Float); UDAFs (user-de ned aggregate
functionswith the signature:f Floatg! Float), andUDTFs (userde ned
transform functions D ecay Decay! Decay. Someexpressions

and conditions are composedusing UDSFs. Userscan integrate their own
aggregationfunctions into the system (it currertly provides a max- and
min-function UDAF) into an aggregationoperator. To connectselection
objects via a transformation operator, the usercan also supply his or her
own transformation function (usually a function to reconstruct vertices
UDTF).

./ CollectionName ConditionList
ConditionList

Attribute

Attribute Attribute
Attribute Attribute Attribute
Attribute AggFunction

i/ Attribute AggFRunction
AttributeList ConditionList UDTF
AttributeList ConditionList

AttributeList ConditionList
expr Condition

IEEEERE
pmmed

L ooy

Figure 8.13: Terminal de nitions

94 CHAPTER 8. QUERY LANGUAGE - PHEASANT QL

AttributeList ::= Attribute

Attribute ::= (Label, Type)

ConditionList ::= Condition

Condition ::= expr CompOP expr

expr::= expr ArithOp exprj Ar | UDSF (ArList)
ArList ;= Ar

Ar ::= Constart | Attribute

Constart ::= IntegerConstan] RealConstan |

StringConstart

CompOP:= > j<j>=j<=]=]<>

UDTF ::= StringConstart

UDSF ::= StringConstart

UDAF ::= StringConstart

ArithOP == +) | jn

AggFunction ::= UDAF j Max j Min

IntegerConstan ::= [sign][digit]*

RealConstan ::= [sign][digit] .[digit]

StringConstart ::= ValueReferenc¢ MemberReference
ValueReference= letter [letter j digit]
MemberReference:= letter [letter j digit] .[letter j digit]
Digit ::= 0j1j2j3)4j5/6j7)8j9

sign = +]j

letter ::= Lowercasg Uppercase
Lowercase::= ajbjg::;jz
Uppercase ::= AjB|Cj::jZ

Figure 8.14: Grammar of the textual elemens of PHEASANT QL

8.3 Semantics

The next step after de ning the abstract syrntax is the de nition of the
formal semarics. The normal approatesare:

Translational Semarics - The sematics is given by de ning a map-

8.3. SEMANTICS 95

ping to models of a simpler language,which is better understood.

Operational Semartics - Expresseshe semarnics of a modelling tech-
nique by giving a medanism that allows to determinethe e ect of
any model speci ed in the technique. An operational semarics for a
particular programminglanguagedescribeshow any particular valid
programin the languageis interpreted assequencesf computational
steps. Thesesequenceshen are the meaningof the program.

Denotational Semarics - The syntactic constructs of a language
are mapped onto constructsin another languagewith a well-de ned
meaning. The target is a mathematical domain and not another
modelling technique.

Axiomatic Semarics - Treatsa model like a logical theory, doesnot
certer on what the model means,but on what can be proven about
it.

In our case,we want to de ne our languageby meansof algebraicop-
erators that are very well understood and deeply studied in the eld of
databasereseart. This way, we want to take advantage of the accunu-
lated knowledgein this area. In consequenceye nd it adequateto make
useof the translational sematics, by making a syntax-to-syntax mapping
of the languageinto the algebraicoperators of the target object.

8.3.1 The Target Language - Intermediate Algebra
Op erators

We have designedour languagemaking use of a syntax mapping to the
algebrawherethe semarics is descriked here.

96 CHAPTER 8. QUERY LANGUAGE - PHEASANT QL

Type System

Beforewe start with the explanation of the algebraicoperators, we intro-
ducethe de nitions and precisenotations which are usefulfor a clearand
unambiguousinterpretation of theseoperators.

De nition 1 (Basic types).
The primitiv e typesare:

F loat (oating point number)
Bool (value \true" or \false")
| nteger

String (sequenceof characters)

De nition 2 (Type constructor).
For the bulk type set, (unorderedcollection of elemens of type), we
write: f ¢

De nition 3 (Type variable).
We de ne the notation for a type variable to be: i;:::; |

De nition 4 (Tuple type constructor).
A tuple is a mapping from a set of attributes to values of a certain
type. We cande ne tuple typesas[a; : 1;::;a,: n]whereforl i n:

i are types

a; are attribute names
a 6 g

The setof attributes de ned for atuple t is written asA(). All the tuples
of type have the sameattributes A().

Nestedtuples are possible. A value of an attribute may be a set of
tuples.

In orderto represen atuple oftype °that cortains the sameattributes
as = [a; : ;i@ @] exceptfor the attribute aj;1 j n we use

:q .
The concatenationof tuples and functions is denoted by

8.3. SEMANTICS 97

De nition 5 (Relation types).
A relation is asetof tupleswhich areall of the sametype[a; : 1;::5a, :
], and we represen the type of the relation by fa; : 1;::5ja, : n]O.

De nition 6 (Structural sub-typing).
Sub-typing is the notion of inclusion betweentypes. It is represeted
by A B, A is asubtype of B.
9 f g f % meaningthat if isa subtypeof 9then the set
typef gissubtypeoff g° Further: [a;: 1;:a0: o] [an: e
JQifforal0 k n:p 9

De nition 6 (Freevariables).
F (e) is de ned asthe set of free variablesof an expressiore.

De nition 7 (Predicates).

For an expressionpred possibly cortaining free variables,and a tuple
t, we denote by pred) the result of evaluating pred where bindings of
freevariablesare taken from attribute bindings providedby . F (pred)

A().

De nition 8 (Elemerts of a tuple).
If bis atuple of type[a; : 1::a, : n] then the type of the attribute b:ag
is j,with O<i n.

De nition 9 (Mapping function).

A function mappingatuple to a newtuple, possiblyof adi erent type,
is alsodenoted by the symbols head.

De nition 9 (Unique attribute namesgenerator).

.1 String is a function that generatesa unique string, di erent from
all others generatedbefore. Thesestrings are usedas labels in some of
the algebraicoperators de ned in the following section.

De nition 10 (Type histogram).
We de ne the type histogramto be:

nl=f[r,:Float]g

n2=f[ry:Float;r,: Float]g

98 CHAPTER 8. QUERY LANGUAGE - PHEASANT QL

w3=f[r,:Float;r, : Float;rs : Float]g

Sometimeswe make use of the notation < aj;:::;a, > , which means
A(lar: 1;:an o nl).

Schema

For the examplesusedto explain our operators, we are goingto make use
of the following sthema:
expcol =
f[id : I nteger;
event : fEventg;
eventsType: | nteger,
responsibe : string]g

runcol =
f[id : I nteger;
event : fEventg;
start : | nteger;
end: | nteger;
sequence: | nteger]g

mypriv atecol =
f[id : I nteger;
event : fEventg;
Date : String;
gueryN umber : | nteger]g

Event =
[id : I nteger;
bx : integer;
particl e : f Particle g;
vertex : f Vertex g]

8.3. SEMANTICS

Particle :[id : | nteger;
mass : Float;
Px : Float;
Py : Float;
Pz : Float;
Energy : Float;
M CParticle: f MCP article g;
]
Vertex :
[id : I nteger;
X : FLoat;
y : Float;
z : Float;
M CVertex : fMCV ertex g;
outgoingP articl e : Particle ;
ingoingP articl e : f Particle g]

MCP article : [id : | nteger,
mass: Float;
Px : Float;
Py : Float;
Pz : Float;
Energy : Float;
2]

MCV ertex :
[id : I nteger;
X : FLoat;
y : Float;
z : Float;

]

100 CHAPTER 8. QUERY LANGUAGE - PHEASANT QL

As stated before in chapter 3, someof the erity attributes might
changeslightly from experiment to experimert.

Algebraic Op erators

Having the type systemde ned in the previoussection,we are now ready
to de ne our algebraic operators. In Fig.8.15, we give the type signa-
ture for ead operator. The semaric of the operators is summarizedin
Fig.8.16. Informally, we can de ne our operators as follows:

selection
icate pred.

ored(X) - Selectsall elemerts of X that satisfy the pred-

X

id mass energy

1 15
2 18

4
5

[mass> 1:5(X)]

id mass energy

2 138 5
join X ,eqY -Joinsthe collectionX and Y usingthe join predicate
pred.
X |id mass energy
1 15 4
2 138 5
3 1.0 6
Y | id mass energy
5 13 4
6 14 5

8.3. SEMANTICS

[X predY] Tuplel
id mass energy| id
1 15 4
1 15 4
2 138 5
2 138 5
Where pred =
unnest PN

Tuple,
mass energy
1.3 4
14 5
1.3 4
14 5

tuple;:mass > 1.0 and tuple;:mass > 1.0.

101

pred(X) - returns the collection of all pairs (x,y) for ead

x 2 X and for ead y 2 x:path that satisfy the predicate pred(x,y)

X Event
id Particle
X'y z
1/1 11
2 2 2
3 3 3
212 2 2
111
}rpuee“ ticl e1:E vent:P articl e“”(x)] Even Particlel
id Xy z
1 111
1 2 2 2
1 3 3 3
2 2 2 2
2 111

=head

reduce 4 (X) -generalizeghe relational projection operator,
collectsthe valueshead(x) for all x 2 X that satisfy pred(x) using

the accunulator

tion like f max; min; sum; avgg .

X

id mass energy

1 15 4
2 138 5

, Which canbe a set, (), or an aggregatefunc-

102

CHAPTER 8. QUERY LANGUAGE - PHEASANT QL

[e (X)] | id
1
2

outer-join X peqY -isthe left outer join betweenX and Y using
the join predicate pred. If the range variable y of Y is empty or
there are no elemens that can be joined with the range variable x
of X, then y becomesa null and the result is the pair < x; null >.

X |id mass energy
1 15 4
2 138 5
3 1.0 6

Y | id mass energy

5 1.3 4
6 14 5
X preda Y] Tuple; Tuple,

id mass energy|id mass energy
1 15 4 5 13 4
2 138 6 5 14 5
3 18 5

Where pred= \tuple;:energy = tuple;:energy®

outer-unnest = B?gé - Similar to the unnest, but if x.path is empty

for x 2 X or pred(x,y) is falsefor all y 2 x:path, then the pair (X,
NULL) is given as output.

X Event

id Particle
Xy z

111 11
2 2 2
3 3 3

212 2 2
111

8.3. SEMANTICS 103

= R oo % €(X)] | Evert | Particlel
d ...|x vy z
1 ../3 3 3
2
nest p;zead:gOUp(X) - Imagesof elemens x and y of a given col-

lection X, (head(x) and head(y)), are grouped togetherin the same
group if their ewaluation value of the group-by-function group is
equal, (group(x) = group(y)). After grouping, the accunulator
whereeither 2 fMax;Ming or 2 fmax; min; sum;count;:::g,
will reduceead group. The next sectionwill describe thoroughly
theseaggregatorfunctions.

The result of evaluating the accunulator function can be divided
into two groups:

For 2 fmax; min; sum;count;:::g, in order to feed directly
the result operators. An examplecould be:

X | Event Particlel Particle2
id Xy z Xy z
1 0 0O 111
1 111 2 2 2
1 0 0O 3 3 3
2 0 0O 2 2 2
2 0 0O 111
[[Pﬁ)é: [value:"P ar ticl el:x+ P ar ticl e2:xYY>=E vent:id (X)] max
3
2

For 2 fMax;Ming. An examplecould be:

[Maxcsvaletple>=Eventid)1 | Evert | Particlel Particle2

tr ue
id ...|x vy z X'y z
1 ..|1 11 2 2 2
2 0 0O 2 2 2

104

CHAPTER 8. QUERY LANGUAGE - PHEASANT QL

Where< value;tuple >= [value :°°Particl eL:x+ Particl €2:x%tuple:
X1.

union = [(X;Y) - Returnsall tuplesthat occurin either X and, if
A(x)=A(vy), with x and v beingtype variablesof respectively
Xandy.

intersection =\ (X;Y) - Returns all tuples that occur both in X
andin Y, if A(x) = A(y), with x and y beingtype variablesof
respectively X and Y.

di erence = n(X;Y) - Returnsall tuplesthat occurin X but do not
occurin Y, if A(x) = A(v), with x and y beingtype variables
of respectively X and Y.

105

8.3. SEMANTICS
Selection fg! fg
pred pred: ! BoolF(pred) A()
I
Join f 1g f og! fltuple;: 1;tuples: 7]g
pred pred: 1; 2! BoolF(pred A(1)[A(2)
i 0
Unnesting fgl f%
name:path 0
pred pred: ; “! fBoolg
if =TJay1: 1;55an: nypath: o];0<n; ¢
O=TJa;: 1::nan: o] [name: g
name = ()
Reduce if =1[: fig! f o0
=head _ _
pred if = max;min; sum;::: f g! o
head: ;! >
pred: 1! Bool;F(pred) A(1)[A(2)
Outer-Join f 1g f »g! fltupler: 1;tuples: »>]g
pred pred: 1; 2! BoolF(pred A(1)[A(2)
i 0
Outer-Unnest f g! f
name:path 0
pred pred: ; “! Bool
if =T[a: g;unan: nypath: o;0< (o)
0= [a1: 1;55a0: n] [name: ¢]
name = ()
nest if 2 fmax; min; sum; avg:..g
f g! fF loatg
=head=goup
pred head= :[value: Float]
if 2fMax;Ming
fg! fg
head= :[value: Float;tuple:]
pred: ! BoolF(pred A()
Union
fg fg! fg
Intersection
fg fg! fg
Di erence
n fg fg! fg

Figure 8.15: Type signature of our algebraicoperators

106 CHAPTER 8. QUERY LANGUAGE - PHEASANT QL

Selection Selectsqualifying tuples accordingto predicate pred:
pred(€) = ftjt e;predt)g

Join Connectsall tuples in e; to all in e; and selects
tuples accordingto pred
€ pred€ = fltuple; sty tupley to]its eyt ey predity;ta)g

Unnesting Selectsa tuple and its nestedattribute de ned in path,

accordingto to predicate pred
name :path

pred (e) := f(ty;to)jt1 er;ty path(ty); pred(ty;tz)g

Reduce Collects valuesde ned in head(t), accordingto pred,
in the aggregator

pfe'éead(e) = f headt)jt e;pred(t)g

Outer-Join ~ Sameas Join, but returns the tuple [tuplel; : t; tuple; : NULL]
if e is empty or there are no elemernts to join to t 2 el:

€ pred € = fltuplel : ty;tuple; : to]j

t1 e
to if A f o predts;x)jx eqg
then null

else fxjx e predti;x)gg

Outer-Unnest Sameas Unnest, but returns the tuple t [name = NULL]
if t:path is empty:
= = brea(® = f(t1;t2)]

pred
1 e,
t2
if ~f pred(ty;x)jx path(ty)g
then null
else fxjx path(e);pred(ty;x)gg
nest p;zead:gou"(X) = ff headw)gjw e;predw);v = group(w)gj

v group(X)Q
group(X) = fgroup(t)jt X g, with duplicate elemerns removed.

Union returns the set of tuples that occur in both sets:
[(e1;6) = fXjx2 e _ X2 eq

Intersection Returns the set of commontuples:
\ (e1;e) = fXjx 2 e1" X 2 exg

Di erence Returns the set of tuples that return just in the rst set:
n nler; &) = fxjx2 e " : (X2 e)g

Figure 8.16: Operators of the target algebra

8.3. SEMANTICS 107

Aggregation Functions

Eadh of the functions in the set aggf unc 2 f max; min; sum;count;:::g
hasthe signature: aggf unc : fF loatg! Float. The useris supposedto
write more user-de ned aggregatefunctions if necessaryusing the same
signature. The de nition of the aggf uncs can be speci ed asfollows:

count(x) = +flje xg
sum(x) = +fge xg
max : f[value: Floatl]g! Float

max(e) := fxjx e:8y 2 e;mx(x;y) = x:valueg
where:

mx : Float Float! Float
a ifa>=»>b

mx(a;b) = b else

min : f[value: Floatg]! F loat

min(e) .= fxjx e:8y 2 e;mn(x:value;y:value) = x:valueg
where:

mn : Float Float! Float
a if a<=b

mn(a;b) = b else

An exampleof the usageof max is:

X |id mass energy
1 15 4
2 18 5

tr?i)é:d(id> (X) de
2

Certain PHEASANT operators like the Aggregator and Minimal dis-
tance needto de ne a special set of aggregatefunctions. Given a set

108 CHAPTER 8. QUERY LANGUAGE - PHEASANT QL

of tuples [value : Float;tuple :], we needtwo operators to return
the tuple with maximum/minim um value. We de ne thesefunctions as
agg 2 fMax;Ming. Max is speci ed asfollows:

Mx : !
= [value: Float;tuple:

M x([value: f1;tuple: ty];[value: f,;tuple: t;]) =
[value: fq;tuple:tq] if fy>=1,
[value: f,;tuple: t,] else

Max:f g! >
1 = [value: Float;tuple:]Jand ;=

Max(e) = fty < vijt1 > €;8< vyt >2 e: Mx(< vy;t; > <
Vot >) =< vyty >g

For example:

X | Event Particlel Particle2
id Xy z Xy z
1 0 0O 1 1 1
1 1 1 1 2 2 2
1 0O 0O 3 3 3
2 0 0O 2 2 2
2 0 0O 1 1 1
(
M ax=
<0particle 1:x + Particle 2x% < X > =
X :E ventid
i ue w0 | value tuple
Event | Particlel Particle2
id X y z X y z
3 1 1 1 1 2 2 2
2 2 0 0 0 2 2 2

The opposite operation Min returns the correspnding tuple valuethat
pairs with the minimal value comparedagainstthe wholeset. It is de ned
in a similar way asMax:

8.3. SEMANTICS 109

Mn : < Float > | < Float >

<fqty> if fi<=f°
Mn(< fq;t; > < oty >) = <f;-t;> elsel 2

Min :f< Float tuple>g! tuple

Min(e) := ftj < vy;t1 > €8 < vyt >2 e: Mn(< vyt > <
Voita >) =< Vit >g

We can now exercisea formal denotation of thesealgebraicoperators
asit canbe seenin Fig.8.16.

Operator Trees

Textual algebraic forms using the operators just descriked tend to be
better understood if we represeh them as operator trees. This conceptis
easyto graspif we make useof the conceptof a stream of tuples from the
leavesto the root of the tree.

As a helpful visual feature, we represen on the right side of the root
of the tree the A(), surroundedby <>, of the tuples that are resulting
from the data stream. On the right side of the Unnest operator and the
Collection, (leaf), we represem the new unnestedattributes.

In the rst case,the variable represeh the new unnested attribute
extracted, cortaining its type. In the secondcase the variable rangesover
the collection, meaningthat the variable is of the type of the collection
instances.

A simple example can be visualizedin Fig.8.17. At the leaf, we are
generatinga stream of tuples of type [student : Student]. The Studert
collectionis beingrangedby the variable student. The streamis accepted
by the Unnest operator that will output the stream of tuples of type
[student : Student; sup : Supervisor], meaningthat in a tuple we match
eat studert with ead of his supervisors. Finally, with the stream result-
ing from the Unnestoperator, the Reduceoperator acceptsead tuple and
ewvaluatesthe expression[phd : stu:name;prof : sup:namd, building the
set of tuples with the structure < phd;prof >.

We will make useof this visual conceptin the following sectionto help
explaining the semarnics of our language.

110 CHAPTER 8. QUERY LANGUAGE - PHEASANT QL

< phd;prof >

[= ([stu;sup]):[phd:stu:name;pr of :sup:name]
([stu;sup]):(tr ue)

sup

sup:[stu:S uper visor]
([stu]):(tr ue)

stu

Student

Figure 8.17: Example of an algebraicform represeted asa tree.

8.3. SEMANTICS 111

8.3.2 Language Description

As de ned by the grammar, the user's query is descrited by four main
componerts:

Query = QResuIt QDecay QEvent QCollection

We are goingto detail the mapping for eady componert and its opera-
tors aswell asthe necessarysymbols for the formalization. We structure
our explanation for eat operator in the following way: rst the corver-
sion rules, then an informal explanation followed by an exampleand a
depiction of the corresnding plan tree.

Mapping

[[Query]]

Quer

Plan

Visual Syntax .
Semantics (Algebra)

Figure 8.18: Map operator - Translatesthe visual query into our algebra.

We de ne the map operator [Q] asthe translation of the query Q (a
statement composedby abstract syntax notation operators) into the cor-
responding algebraicnotation.

De nition 1 (PHEASANT QL mapping). A map operator [q] is a func-
tion that mapsthe query q specied in PHEASANT QL syntax into a
correspnding expressionof the intermediate Algebra.

De nition 2 (PHEASANT QL sub-mapping). The map operator is a
composition of four sub-mapoperators.

[Qcoiiection Ic,» mapsthe PHEASANT collectionvisual query, Qcoiection »
into the correspnding Algebra.

112 CHAPTER 8. QUERY LANGUAGE - PHEASANT QL

[Qeventle, mapsthe PHEASANT Evert lter visual query Qg yent-
The resulting algebraicform dependson the result of [Qcoiiection Ic
ewvaluation.

[Qoecaylo, mapsthe PHEASANT Decay visual query Qpecay. The
resulting algebraicform is dependen onthe result of [Qevent e €Val-
uation.

[Qresutlr, mapsthe PHEASANT Result query Qresuit- The result-
ing algebraicform is dependert onthe result of [Qpecaylo €valuation.

A queryin PHEASANT QL canbe interpreted (as given by the gram-
mar) as four subqueriesthat correspnd to the four major query steps:
Result, Deca, Evert and Collection. This meansthat the rst step of the
mapping operation will be descriked by the following rule:

|[QUGW]| = [QResuIt QDecay QEvent QCoIIection]I =
= |[QResuIt]|R ([[QD ecay]ID ([[QEvent]IE ([[QCollection]IC))) (Ql)

Figure 8.19: Translation rules from the AST to query Plan - Collection-
Evert materialization

The sub-query[Qcoiiection Ic 1S @ sub-planof [QgyentJe Which in turn is
a sub-queryof |[QD ecay]ID . FinaIIY1 |[QD ecay]ID is a SUb'plan of |[QResuIt]|R-

8.3. SEMANTICS

Symiwl De nition
i Notation usedwhen needed,
to make explicit the attributes of the tuples
w=A()
[H]T] list with a headH and tail T
Hj;] list with one elemen
; empty list
? empty or absenceof operator
lattr ib list of attributes, [a; : 1;:5 a0 0]
name label for the attribute, name= ()
collect Collection name
f dist() arithmetic distance calculation function
expr() arithmetic expressionwherethe
free variables2 A() we may usethe notation
expr(fdist) to meanthat the expression
usesan fdist function
udtf function to generatea tuple
accordingto a pre-de ned type structure
(useful) for the de nition of the Transformer
operator

Figure 8.20: Usedsynbols

113

114 CHAPTER 8. QUERY LANGUAGE - PHEASANT QL

The Collection Op erators

[?]c = Event (Co)

_ = (<cievt>):<evt> o .
[eieede = th (Lo Ve (preseen(collect)ii® (Cy)

X[Yle = [(IX1e:[Y1e) (C2)
X\ Yie =\ ([X1e: [Yle) (Ca)
X nYlc = n([X]c;[Y]c) (Ca)

Figure 8.21: Translation rules from the AST to query Plan Collection-
Evert materialization

The rst rule Cy says that in the caseof any collection operator in the
description of the query, the consideredcollection sourceof events will be
the Evert collection.

As it is explicit in the C;, the collection selection synmbol can be
expressedby intermediate algebraic operators. The stream of tuples ¢
f[c: collectlg, wherecollect is the name of the collection of requestedtu-
ples,and existing in the Collection Catalog. The unnestoperator, in turn,
acceptsthe stream of tuples and constructs a stream f[c : collect;evt :
Event]g, connectingead collect with one of its everts. The reduce op-
erator will ewvaluate the expressionhead (< c;evt >): < evt > for ewery
input elemen and constructs a set.

In order to make the manipulation of these collections more exible
by meansof set union(C,), intersection (C3) and di erence (C4) we have
set mapping rules for these operators. Sincethe operators are the same
and the mapping is direct, we will refrain oursehesfrom explaining them
further.

We will now presen an examplethat conbinessomeof theseoperators
and their correspnding mapping into to the algebra.

A short exampleof a possiblequery mapping could be:

8.3. SEMANTICS 115

Example 1:

expCol runcC ol my PrivateCol —
[gtr ue n(8tr ue \ 8tr ue)]]C—

(Ca) =n([Fe T, ([FunSoN e ™vaece]e))
(C) =n[F58 e (\ (IS e, [E%e ™))

(Co) =n(tn [7LEerm seee (eleewenoupco)iten;

(<c;evt>):(tr ue)

[= (<cievt>):<evt> evt:[c:event]) -
(\ (Hn (<c;evt>):(tr ue) ((tr ue) (runCOI))“[th]’

[= (<cievt>):<evt> evt:[c:event])
thn (<c;evt>):(tr ue) ((tr ue) (

myP rivateCol))ii !

We assumethat expColare collectionswith somespecial purposesde ned
by the systemexperts, runCol are collectionsof everts organizedin runs
and nally myPrivate are the user'spersonalcollectionsof selectedeverts
(likely during previous analysis phases). In this example, we want to
selectthe collection of everts corntained by expcol collection tuples, with
the exceptionof the setof everts that are part of the intersectionbetween
runCol collection tuples and myPrivate collection tuples.

116 CHAPTER 8. QUERY LANGUAGE - PHEASANT QL

< eut >
[= (cievt):<evt> \
(<c;evt>):(tr ue)
evt
event:[c:event] [= (<cievt>):<evt> [= (<cievt>):<evt>
(tr ue) (<c;evt>):(tr ue) (<c;evt>):(tr ue)
Cc evt evt
evt:[c:event] evt:[cievent]
eXpCOI (tr ue (tr ue)
Cc Cc
runCol myPrivateCol

Figure 8.22: Mapping result of collection query example

8.3. SEMANTICS 117

The Event Specication Op erator

|[?]E = HI{QCollection]ICii [evi] (EO)

[Ypred]IE = (<evt>):(pred) ([[QCollection]IC)“ [evt] (El)

Figure 8.23: Mapping the Evert speci cation operator

In casethe Event specication operator is omitted, the result of this
operator will be the resulting set of the evaluation [Qcoiiection Ic -

We can explain the semattics for the rule E; in the following man-
ner: The resulting set of tuples < ewt > of the query plan mapped by
[Qcoiection Ic are fed into the Selecionoperator in order to discard the
the tuples that do not validate the predicate specied in pred. Basi-
cally, for eat variable evt the operator constructs a stream of tuples
f< euvt : Event > g, whereead tuple satis es the condition pred

Let us assumewe want to Iter out all the everts coming from the
query plan that is the result of the rst mapping step ([Qcoiection Ic)»
with the lter predicate\ewvt:bx = 3", wherebx is an attribute of evert.
We would make use of our mapping rules like in example2. The result
can be better visualizedin Fig.8.25.

Example 2:

[Yoevt: bx=3 O]I E=

(E 1) = (evt):(pred(Cevt:bx=3 9) ([[QCOIIection]IC)

118 CHAPTER 8. QUERY LANGUAGE - PHEASANT QL

< ewvt >
(<evt>):(%evt:bx=30)

evt

|[QCoIIection]IC

Figure 8.24: Mapping result of an exampleof Evert Speci cation

8.3. SEMANTICS 119

The Decay Specication Op erators

[?]o = [Qeventle (Do,)
|[;]D =7? (Dob)
: _ [= (<tupl er;tupl ex>):([evt:tupl e1:evt] (tupl eg=ewvt) (tupl ex=ew))
|[HJT]D - (<tupl el;tjpl e2>§:(tr ue) ' ' ’ (
|[H]ID tupl e1:evt:id = tupl ez :evt:id |[T]|D) (Dl)

Figure 8.25: Translation rules for the selectionoperator

The mapping rules Do presetted in 8.25 exist especially to deal with
empty sets. If there is no Decay operator, the consideredresult setwill be
the completeinput set returned by [Qgvent]e, USing the query rule Dy, .
Rule Do, dealswith an empty list of operators.

The rule D, is important to deal with the result of seweral isolated
deca/s drawn by the user. In fact, the sematics of di erent unconnected
decass is speci ed by this rule to be a stream of tuples resulting from the
join operation over the streamsof their individual results.

120 CHAPTER 8. QUERY LANGUAGE - PHEASANT QL

The Selection Op erator

|[name :path]I _
pred=lattr ibdD —
= [= (evt;name):<ev t;name;! attr ib> (
- (evt;name):(tr Uﬁ)
name :evt:patl
(<evt>):(pred) ([[QE vent]IE))
ji [evt ;name Slattrib] (Dz)

Figure 8.26: Translation rules for the selectionoperator

This operator will be de ned in the algebraicnotation in the following
way: the input will be the set of everts (evt) result of the query subplan
[Qevent]e and it will start with a generationof a streamf< ewvt >g.

Suppose,asin our example 3, that the user simply wants to retrieve
from the systemall the particles with positive energyand existing mass.
It is required that the result stream has for eat tuple the valuesof the
computation of the squareroot of the sum of the squaredpx, py and pz.

The result of the mapping of this query by using our just de ned rules
would look like in Fig.8.27.

Example 3:

|[my particl e:P articl e]I _
OE nergy>0 and mass> 0%f p=sqrt(px2+ py2+ pz2);b=mass 0:1gdD —
(D) = [= (evt;my particl e):<ev t;my particl e;p= sqrt(px2+ py2+ pz2);b=mass 0:1> (
2 - (evt;my particl e):(tr ue)

my par ticl e:[evt:par ticl €] i+ [evt ;name ;p;b]
(evt;my particl €):(pred) ([[QE vent]IE)) I

8.3. SEMANTICS

< ewt; myparticle;p;b>

[= (evt;my particl e):<ev t;my particl e;p= sqrt(px2+ py2+ pz2);b=mass 0:1>
(evt;my particl e):(tr ue)

myparticle

my particl e:[evt:P articl €]
(evt;my particl €):(pred(°E ner gy>0 and mass> 09)

evt

|[QEvent]|E

Figure 8.27: Simple Selectionexample

121

122 CHAPTER 8. QUERY LANGUAGE - PHEASANT QL

Transformer
[© B?Qj'ifm[ib !0)_ 9|! '[ijT]]D = |
) [(_w‘(’)V:/(p-rV;d) attr i ([[O P HJTIS)i [wOlattrib] (D)
[0! [HjT]b =

Hn [= (<tupl ey;tupl ex>):([evt:tupl er:evt] (tupl ep=ewvt) (tupl ex=ewt))
(<tupl er;tupl ex>):(tr ue) (

tuple tuple 2
|[O T]D ! \ tupl ey :evt:id = tupl e :evt:id °© |[H]ID)
i [evt ;A (tuple 1)=evt ;A(tuple 2)=evt] (D4)

[Oname:udtf | [Hj;]]ID —

pred=|attr_ib ' . .) _
Hn [(_w)(vg)re(;v [name :udtf (w)] lattr ib) (IH]I\IID\I)“ [A(w);name ;A (lattrib)] (Ds)

Figure 8.28: Translation rules from the Transformeroperator

The mapping of the description of the transformation operation is de-
ned mainly by three translation rules. The rst, Ds, is responsible for
starting to map the chain that links the resulting tuplesto the transformer
operator and the rest of the deca tuples. The rst thing is to interpret
the type structure of the tuple that will be the result and leave the rest
of the mapping to the rules D4 and Ds. This meansthat a reduction to
the result of the mapping of the pair composedby the transformer oper-
ator and the list of decayed particles is set. The rule D4 is responsible
for recursively mapping the operatorsin the seweral branchesof the decy
into joins and D5 stops the recursionin the last elemen and maps the
transformer operator itself into a reduction.

In Example 4, we will transform a decg query. Hereit is descriked by
two particles (one with positive massand the other negatiwe), that decy
from a vertex (myvertex) the valuesof which are computed by using the
transformation function Transform, if the sum of both massesds greater
than 0.5. The result of applying the transformation rules can be obsened
in the query plan of Fig.8.29.

8.3. SEMANTICS 123

Example 4:
I[O myvertex:? | Omytr ans:Transf orm |
tr ue=fg 0 +:mass+ :mass> 0:5%fg °
f *:Particle . :Particl e

%energy>0%fg * %energy< 00%=fg dlo =

tn [= (W%:<w % ([[(\mytr ans:Transf orm |
predwO)(tr ue) \W0 * :mass+ :mass> 0:50=fg
t:Particle . :Particl e wO
Oenergy>0%=fg ' %nergy< 0%fg g]ID)

(D3)

jj Wl

Hn [= (wiwz)<w 1;W2>(
pred(wi;wz)(tr ue)
tn [evt:tupl er:evt] (tupl ez=ewt) (tupl e2=evt)(
(<tupl eq;tupl ex>):tr ue
I[Gmytr ans:Transf orm | ‘Particle qtuple 1
0 +:mass+ :mass> 0:5%fg * Oener gy< 00%=fg 4D
*:Particle qtuple »
tupl e :evt:id = tupl ez :evt:id I[%ener gy> 0°=fg ID
)ii [evt ;A (tuple 1=evt);A(tuple 2=evt)])

(D4)

ii [wO[evt ;A (tuple 1=evt);A (tuple 2=evt)]]

_ [= (w;mytrans;evt; *):<w ;mytrans;evt, *>
(D5) = tin pred(w;mytr ans;evt; *)(tr ue) (”n
[evt:tupl er:evt] (tupl ez=ewvt) (tupl ez=evt)(
(<tupl er;tupl ex>):tr ue
[= (w):<w ;mytr ans= Transf orm> Particle qw i tuple 1=[A(w);mytrans]
tn (w):pred(® *:mass+ :mass> 0:59 ([[Oener gy< 00=fg]ID)i
)] *:Particle qtuple 2=[evt; *]
tupl e :evt:id = tupl ez :evt:id I[%ener gy> 0°=fg ID
ii[evt A (w=evt);mytrans ; +])

jj [evt ;A (w=evt);mytrans ; *

_ [= (evt; ;mytrans;evt; *):<evt, ;mytrans;evt; *>
(DZ) = lin pred(evt; ;mytrans;evt; *)(true) (”n
[evt:tupl er:evt] (tupl ez=ewvt) (tupl ex=ewt)
(<tupl er;tupl ex>):tr ue (
tn [= (evt; ;mytransevt; *):<evt, ;mytrans;evt; * ;mytrans=Transf orm]>(
(evt; ;mytrans;evt; *):pred(® *:mass+ :mass> 0:59)
tn [= (evt;)<evt, >
(evt;):(true) (
(evt):[:evtP articl €] s w=[evt ; ilevt; mytrans
(evt;):(pred(%nergy< 0%) (IQeventJe)i ™ il Y]
. [(vt T)<eve T>
tupl e :evt:id = tupl e :evt:id (evt; *):(tr ue) (

(evt):[* :evt:P articl €] Glevt: *
(evt; *):(pred(®energy> 0%) ([QEventIe))ii fevt: 7
i [evt; ;mytrans ; *])

ii[evt; ;mytrans ; Y]

124 CHAPTER 8. QUERY LANGUAGE - PHEASANT QL

<ew, ;mytrans; * >

[= (evt; ;mytrans; *):<evt, ;mytrans; *>
pred(evt; ;mytrans; *)(true)

[= (evt; ; *)<evt, ;mytrans; *;mytrans=Transf orm>
(evt; ;mytrans; *):pred(® *:mass+ :mass> 0:50)

<eu; *: >

[= (<tupl es;tupl e2>):([evt:tupl er:evt] (tupl ez=ewvt) (tupl ex=ewt))
(<tupl eg;tupl e2>):(tr ue)

< tupley;tuple, >

tupl e1:evt:id = tupl e, :evt:id

[= (evt;)i<evt, > [= (evt; *)<evt, *>
(evt;):(true) (evt; *):(true)
+
(evt):[:evt:P articl €] (evt):[* :evt:P articl €]
(evt;):(pred(%nergy< 09) (evt; *):(pred(%nergy> 09)
evt evt
|[QEvent]|E |[QEvent]|E

Figure 8.29: Example of the mapping of the transformer operator

8.3. SEMANTICS 125

Reference Operator - Path Expressions

[prena pHITIE™(Q = [HITIE™ (M Tnrowna oo (Q) (D)

[HITIE"(Q = [TIF"(HIF"Q) (D)
[e o HITIE™(Q) = 0

[HiTPamep 1+ names? LIR™°(Q) (Dsg)
[emleelE™ Q= e ™ (Q (Ds)

[} reme oHITIE™(Q) = 0
HiTI=mel) i o5 (Q) (D10)

: 0 - : O-path
[} i o™ (Q) = = ey name=p2th) Q) (D11)

Figure 8.30: Translation rules for the referencesoperators

In Example 5, we shov a mapping which usesboth mandatory and
non-mandatory path expressionsWe warnt to selectall the particles with
mandatory path expressiongo Vertex and a correspnding MonteCarlo
simulation particle. We also want to return the simulated MonteCarlo
Vertex if there is any referenceto it aswell. The mapping is somewhat
more densethan our other examples.The result is a sequencef unnesting
operations, which canbe better visualizedwith the executionplan of 8.31.

Example 5:

|[my par ticl e:P ar ticl e(I primv ertex:Vertex
tr ue=fg ' tr ue=fg !

(simpar ticl e:M CP articl e(I simpr imv ertex:M CV ertex)))]] _

tr ue=fg r tr ue=fg D~

(D) _[[r) I (primv ertex:Vertex. (simpar ticl eM CParticl e I
6 e tr ue=fg tr ue=fg r
simpr imv ertex:M CV ertex))]]my par ticl e([[my par ticl e:P ar ticl e]l)
tr ue=fg D tr ue=fg D

126 CHAPTER 8. QUERY LANGUAGE - PHEASANT QL

— | simpar ticl e:M CParticl e, simpr imv ertex:M CV ertexyymy particl e
(D7) I(_ tr ue=f . (! true=fg)b
([[primv ertex:V ertex]lmy par ticl e([[my par ticl e:P ar ticl e]I)
tr ue=fg D tr ue=fg D

(D7) - |[| simv:rtex:M CVertex]Isimpar ticl e
r tr ue=
(II I sim%ar ticl e:M CParticl e]lmyparticl e
tr ue=fg)
(II | primv ertex:V ertex]lmypartlcl e
tr ue=fg | - D
my particl e:P articl e

— simv ertex:M CV ertex gsimpar ticl e
(DZ) |[/ true=fg]I) P

(II I simpar ticl eM CP articl e]lmyparticl e

tr ue=fg)
(II I primv ertex:V ertex]lmypartlcl e
tr ue=fg D
(”n [= (evt;my particl €):<ev t;my par ticl e> (my par ticl e:[evt:P articl e](
(tr ue) (tr ue)

|[QEvent]|E)) ii [evt ;myparticle])))

- | simv ertex:M CV ertex ysimpar ticl e
(Dg) |[r tr ue=fg]I
(II I simpar ticl eM CP articl e]lmyparticl e
’ tr ue=fg
(Hn primv ertex:[my particl e:Vertex]
(tr ue)
([= (evt;my particl e):<ev t;my particl e> (my par ticl e:[evt:P articl e](
(tr ue) (tr ue)

[QeventJg))) ii [6Vt :myparticle :prim vertex]y)

- | simv ertex:M CV ertex ysimpar ticl e
(Do) [tr ue=fg |
(”n simpar ticl e:fmy particl e:M CP articl €]
(tr ue)
(primv ertex:[my particl e:Vertex]
(tr ue)
([= (evt;my particl €):<ev t;my particl e> (my par ticl e:[evt:P articl e](
(tr ue)]] (tr ue))
I[QEvent]lE)))) i [evt ;myparticle ;prim vertex ;simparticle])

(D11)
= = simpr imv ertex:[simpar ticl e:M CVerteX](
(tr ue)
simpar ticl e:lmy particl e:M CP articl e]> (
(tr ue)
primv ertex:[my particl e:Vertex]> (
(tr ue)
[= (evt;my particl €):<ev t;my particl e> (my par ticl e:[evt:P articl e](
(tr ue) (tr ue)
I[QEvent]lE))))) i [evt ;myparticle ;prim vertex ;simparticle ;simprim vertex]

8.3. SEMANTICS 127

< evt; my par ticle; primv ertex; simpar ticle; simpr imv ertex >

_ simpr imv ertex:[simpar ticl e:M CV ertex]
~ (true)

simparticle

simpar ticl e:fmy particl e:M CP ar ticl €]
(tr ue)

primvertex

primv ertex:[my particl e:Vertex]
(tr ue)

< ewt; myparticl e >

[= (evt;my particl €):<ev t;my particl e>
(tr ue)

myparticle

my particl e:[evt:P articl €]
(tr ue)

evt

|[QEvent]|E

Figure 8.31: Example of the mapping of the referenceoperator

128 CHAPTER 8. QUERY LANGUAGE - PHEASANT QL

Aggregator

f
|[2 zggdunc(expr)(Q)]]D —

Hn a%\?vf):ll(f;id)(w)i([Va|Ue?epr (w)]) =evtiid (IQIb)ii [value :expr (w)] (D13)
aggf unc 2 f max; min; avgg

[2 5555 Q)b =
Hn a%\?vj_((gggvalue:expr(W):tupl ew])=evt:id ([[Q]D)ii[value :expr (w);tuple :w] (D14)
agg 2 fMax;Ming

Figure 8.32: Translation rules for the aggregatoroperator.

A nest operator groups the tuples by evt. Ead group will then be
reducedby the aggregatorfunction Max or Min, and will produceasresult
asetoftuples (of typef @), whereead tuple is the maximum or minimum
expr value.

In orderto shaw the usageof theserules we have Example 6. Here,we
have a selectionof all the particles with positive energy and we want to
group them by event and determinethe onethat hasthe maximum value
for the massattribute with the restriction that it should be greater than
0.65. The result of the mapping can be better visualizedin the execution
plan of Fig.8.33.

Example 6:

|[2 M ax(my particl e:mass) (my par ticl e:P articl e)]] —
Omy par ticl e:mass> 0:659 OE ner gy> 0°%=fg D~

(D) — Max= (w):([value:my particl exmass;tupl e:w])=ewt:id (
14) = (w):(my par ticl e:mass> 0:65%)
) M ax(my particl e:xmass) ([[my par ticl e:P articl e]l))
Omy particl e:mass> 0:65° OE ner gy> 0%=fg D

D = M ax= (w):([value:my particl e:mass;tupl e:w])=ewvt:id
(2) - (w):(%my particl e:mass> 0:65°) (
Hn [= (evt;my particl €):<ev t;my particl e> (
(evt;my particl e):(tr ue)

8.3. SEMANTICS 129

(evt):[my particl e:evt:P articl €] ([[Q]I))
(evt;my particl €):(pr ed(°E ner gy> 09) Event IE
i [evt ;myparticle])ii [w=[evt ;myparticle]]

=Hn
M ax=[value:my particl e:mass;tupl e:<ev t;my par ticl e>]=ewvt:id
(evt;my particl e):(%my particl e:mass> 0:650) (
[= (evt;my particl €):<ev t;my particl e> (
(evt;my particl e):(tr ue)
(evt):[my particl e:evt:P articl €]
(evt;my particl €):(°E ner gy> 09 ([QEventle)

i [evt ;myparticle]

< ewt; myparticl e >

M ax= (evt;my particl €):[value:my particl e:mass;tupl e:<ev t;my particl e>]=ewvt:id)
(evt;my particl €):(°my par ticl e:mass> 0:65%

[= (evt;my particl €):<ev t;my particl e>
(evt;my particl e):(tr ue)

myparticle

(evt):[evt:P articl €]
(evt;my particl €):(pred(°E ner gy> 09)

evt

|[QEvent]|E

Figure 8.33: Result of a simple aggregatoroperator example

130 CHAPTER 8. QUERY LANGUAGE - PHEASANT QL

Minimal Distance

f dist —
|[Ql expr =agg ' QZ]ID -
=t agg=<v alue=f dist;tupl e=([evt:tupl e;:evt] (tupl e;=ewt) (tupl ex=ewt))>=[evt:id])(
- tr ue
[= (<tupl er;tupl ex>):([evt:tupl er:evt] (tupl ez=ewvt) (tupl ex=ewt))
(<tupl er;tupl ex>):(tr ue) (
|[Q2]|D [tupl e1:evt:id]=[tupl e:evt:id]* expr (f dist) |[Q1]|D))
ii [evt ;A (tuple 1=evt);A(tuple 2=evt)] (D15)

agg 2 fMax;Ming

f dist —
=t agg=<v alue=f dist;tupl e=[evt:tupl e;:evt] (tupl ep=evt) (tupl ex=ewvt))>=[evt:id]))(
- tr ue
[= (<tupl er;tupl ex>):([evt:tupl er:evt] (tupl ez=evt) (tupl ex=ewt))
(<tupl er;tupl ex>):(tr ue) (
|[Q2]|D [tupl e1:evt:id]=[tupl ez:evt:id " expr (f dist) |[Q1]|D))
ii [evt ;A (tuple 1=evt);A(tuple 2=evt)] (Dls)

agg 2 fMax;Ming

Figure 8.34: Translation rules for the minimal distance operators.

Both rules D ;5;(mandatory), and D 5, (hon-mandatory), are very sim-
ilar. The di erence betweenthem is only the join operator. Tn the case
of the non-mandatory versionwe will usea left-outer join.

The join constructs a set of pairs of all tuples which result from the
query plan mapped from Q; that are asseiated with the onesof the query
plan mappedfrom Q, through the validation of the logical expressiorexpr.
In other words, for ead evernt all resulting tuples tuple; and tuple, are
conmbined. In the caseof the left-outer join of the non-mandatory case,
the result is a setof pairs that conbinesall valuesof tuple; with all values
of tuple,, if their condition predicate is true. In the casethat no tuple,
valuesexist (or are not valid) for every tuple; a pair < tuple;; null > is
returned.

The nestoperator groupsthe tuple input,[evt : tuple;:evt] (tuple;=eu)
(tuple;=eut) and their evaluated distancefunction, f dist, by the attribute
value [evt:id] of eat tuple. Each group is reducedby the aggregatorfunc-
tion, M ax or Min, and the result is the rst tuple found that veri es the

8.3. SEMANTICS 131

aggregation.

In our Example 7, we want to determinefor the Particles and Vertexes
the pairs per evert with the result of the minimal distance greater than
0.12(the minimal function is de ned by the expressiorfdist). As we have
usedthe non-mandatory version of the minimal distance operator in this
example, the resulting tuple pair can have empty Vertex elemens. The
result of using our descrited rules is visualizedin Fig.8.35.

Example 7:

f dist = P (WX Woix)2+ (wely woiy)2+ (Wiiz wopiz)?

|[my particl e:Particl e f dist I myvertex:V ertex]l _
(wq):tr ue=fg f dist> 0:12=M in * (w):tr ue=fg D~

D agg=<v alue=f dist;tupl e=[evt:tupl e1:evt] (tupl ez=ewvt) (tupl e;=ewt))>=[evt:id]))

(16) tr ue ol ol i (
my particl e:P articl e Ist myvertex:V ertex

L " 1 [™ Io)

|
(wq):tr ue=fg D fdist> 0:12=Min * (w):tr ue=fg

tn agg=<v alue=f dist;tupl e=[evt:tupl e;:evt] (tupl eg=ewt) (tupl ex=ewt))>=[evt:id]))
(D2) tr ue (

[= (evtmy particl e):<ev t;my particl e> (™ particl e:[evt:P articl €] ([Q 1£)
(evt;my particl e):(tr ue) (evt;my particl e):(tr ue) EventlE
ii [evt ;myparticle]
f dist I
f dist> 0:12=Min *
fin
[= (evt;my vertex):<ev t;my vertex> ((evt):[evt:V ertex] (IIQ]l))
(evt;my vertex):(tr ue) (evt;my vertex):(tr ue) EventlE
i [evt ;myv ertex]

)ii [evt ;tuple 1=myparticle ;tuple 2=myv ertex]

=t M in=<v alue=f dist;tupl e=[evt;my particl e;myvertex]>=[evt:id]
(tr ue)
([S[evt:tupl e;:evt] (tupl ep=ewt) (tupl e2=evt)(
(<tupl er1;tupl e2>):(tr ue)
Hn [=<evt;my vertex> (
(evt;my vertex):(tr ue)
(evt):[evt:V ertex] s [evt ; erte
(evt;my vertex):(tr ue) (IIQEvent]IE))”[vLmyverex |
[tupl e1:evt:id]=[tupl ez:evt:id]* f dist> 0:12
[=<evt;my particl e> (
(evt;my particl €):(tr ue)
(evt):[evt:P articl €] ii [evt ;myparticle]
(evt:my particl €):(tr ue) ([QeventIe))ii
)) ii [evt ;myparticle ;myv ertex]

132 CHAPTER 8. QUERY LANGUAGE - PHEASANT QL

< eut; myparticl e;myvertex >

M in=<v alue=f dist;tupl e=[evt;my particl e;myvertex]>=[evt:id]
(evt;my vertex;my particl e):(tr ue)

< euvt; myparticl e;myvertex >

[=[evt:tupl e1:evt] (tupl ep=evt) (tupl ex=ewvt)
(<tupl er;tupl e2>):(tr ue)

< tupler;tuple, >

[tupl eq:evt:id]=[tupl ez:evt:id]* f dist> 0:12

myparticle
myvertex
[= (evt;my vertex):<ev t;my vertex> [= (evt;my particl €):<ev t;my particl e>
(evt;my vertex):(tr ue) (evt;my particl e):(tr ue)
(evt):[evt:V ertex] (evt):[evt:P articl €]

(evt;my vertex):(tr ue) (evt;my particl e):(tr ue)
evt evt
|[QE vent]IE |[QEvent]|E

Figure 8.35: Result of the minimal distance example

8.3. SEMANTICS 133

Comparison

[ored(Q)lo = M (wypred([Qlp)il ™ (D17)
|[predl(predz(Q))]]D = [pred; and predz([[Q]ID)]]D (D18)

Figure 8.36: Translation rule of the comparisonoperator

By rule D,7, the selectionoperator lters out the tuples resulting
from the rest of the query plan, generatedby mapping the query Q. The
rule D,g is a simpli cation that composesa conjunctive single predicate
out of two.

A possible example of the usageof these rules can be like the one
descriked in example8. It is required that the massof the vertex should
be greaterthan the particle it deca/s from. The correspnding query plan
generatedby using our rules can be visualizedin Fig.8.38.

Example 8:

|[Omy vertex:mass>my particl e:massO(Q)]]D =

(D 17) th (w):pred(w)(%my vertex:mass>my particl e:mass?) ([[Q]D)“ W

134 CHAPTER 8. QUERY LANGUAGE - PHEASANT QL

< w?>

(w):pred(w)(%my vertex:mass>my particl e:mass?)

w

[Qlo

Figure 8.37: Result of a comparisonsimple example

8.3. SEMANTICS 135

The Result Op erators

[?1r = m[QDecay]IDiiW (Ro)
[Pl ivlr = yprod o (MQoecaylpii™) (Ra)
[Pl ok = Nonerer (M Qpecadoii™) (R2)
[Plawivle = oypred o (MQoecaylpii™) (Rs)
[#R e = 290 (0 (1 Qp ecaylo i) (Ra)

aggf unc 2 f max; min; sum;count;avg; :::g

Figure 8.38: Result set transformation rules.

The rule R, statesthat in caseof omissionof result operatorsthe result
set will be the collection retrieved by the ewaluation of [Qpecay]lo. The
usefulnessf this rule dependson the implemenation of it, but could be
consideredasa way to feedsomeother toolson top of PHEASANT meart
to manipulate the result in somedi erent ways.

The aggregatefunctions to generatehistogramscan be de ned asde-
scribed in Fig.8.39.

HiD,i2f1,2,3g: f g! i

Figure 8.39: Signature of the histogram aggregatefunctions

In Fig.8.40,we exemplify the mapping of the value result operator. In
this case,the useris interestedin summing up all the energy valuesin
the tuples that result from the algebramapped by: [Qpecaylo. Basically,
this will represemn a reduction on the tuple stream, with the aggregation
function Sum.

136 CHAPTER 8. QUERY LANGUAGE - PHEASANT QL

Example 9:

S —
Or#;/nparticl e:energyo]lR -

Sum= ([r: ticl e: ..
R4 (lJer;;(tr(\llng)([r my par ticl e energy])(m[QDecay]ID i W)

Sum= (w):([r:my particl e:energy])
(w):(tr ue)

< WwW?>

|[QD ecay]ID

Figure 8.40: Transformation result of a result operator using the aggrega-
tion function Sum.

8.4. SUMMARY 137

8.4 Summary

In this section,we have descritedthe designapproad for the HEP analysis
query language.

A carefully selectedalphabet notation wasintroduced. It aimsto deal
with the domain-speci ¢ conceptsat all the stagesof the query patterns.
This is part of our global strategy to approad the optimization of the
HEP analysisprocess.

We descrited the syntax of PHEASANT QL. We started with the
grammar of the abstract syntax graph, which is more closeto the vi-
suallanguageparsing requiremerts, and proceededo a more abstract ap-
proad, although more easyto deal, which wasthe syrtax tree grammar.
Togetherwith thosede nitions, rulesto descrike valid or false sertences
in our languagewere set.

Finally, the semarics of the languagewere de ned by making use
of the translational semarnics mapping. Syrnax-to-syntax mapping from
PHEASANT QL into an algebrawas used.

Further optimization at this phasecan be done either by proposing
an alternative languageand/or addition of new operators, or by tighten-
ing cortrolling the translation to the algebraic notation by adding more
semairic rules.

138 CHAPTER 8. QUERY LANGUAGE - PHEASANT QL

Chapter 9

Protot ype Framew ork -
PHEASANT

In this chapter, we presen the architecture of the framework of our im-
plemened prototype.

We start with a generaloverview of this framework in Section9.1. Af-
terwards, the se\eral query transformation modules are detailed: First,
we describe the userinterfacein section9.2; then, in section 9.3, we ex-
plain the plan generator;and nally, in section9.4, we presen the code
generator.

9.1 General Overview

It is not the purposeof this thesisto discussa full- edged implemertation,
but to presen a proposedarchitecture of a feasibleprototype. Therefore,
we descrike the architectural designand implemertation in avery compact
way.

In order to jump into the description of the three main modules, we
start by introducing the readerto the generaldesign. In this overview
section,we rst give a systemengineeringperspective of the framework,
remenbering the roles and use casesfrom the requiremens. Then, we
give an insight into the architectural designand, nally , we explain the
technology usedfor implemerting PHEASANT.

139

140 CHAPTER 9. PROTOTYPE FRAMEW ORK - PHEASANT

9.1.1 Roles and Use Cases

As reasonedn Chapter 7, inspired by the Domain Modeling approad we
proposedto tackle the problemin HEP analysisby specifying a framework

that supports di erent modeling levels [7] (seeFig.7.1). We resene to

oursehesthe role of meta-meta-malelers. This meansthat we have set
the data meta-metamodel the framework hasto dealwith. The instances
of this meta-metamodel (see9.1) are de ned by the meta-madeler.

1
Collection Catalog

contains

. o 1+ .]
<<Collection>> Event <<Physics Objects>>

Meta Meta Model
W TR

Vertex

Particle

Run Event \

MC_Particle MC_Vertex

Meta Mgdel

|
s g %@ﬁ

Model

Figure 9.1. Model levels. The domain experts will deal with the meta-
modeling of physicsobjects.

In this case,we assignthe responsibility of meta-madeling to the team
of dewelopers in a speci c experimert. The framework copes with the
description of the speci cities of the shhemathat have somevariations in
di erent experimerts.

The physicist, who takesthe role of the query modeler, is immediately
aware of the changesn the instancesof the meta-meta-malel just by using
the visual operators when modeling his query.

9.1. GENERAL OVERVIEW 141

As shown in Fig.9.2, we have de ned four main systemactors. The
nal userinteracts with the systemby editing the query statemert and
requestsit to be run.

The domain expert is responsible for de ning the data sdiema, the
user-de ned functions and constaris for the speci c experimert.

The query storagebaseis the main repository for the queriesand their
results. It is responsible for dealing with the query history for ead user
and analysis. It can be seenas the repository of the meta-information
concerningthe query itself (dealing, for instance, with details like query
graph, query result, version of the query, dates, author, time spert run-
ning, etc.).

Finally, the Physics Storagebaseis the experimert's speci c storage
framework that dealswith the data to be analyzed.

In the rst implemertation of our prototype, we have concenrated on
the dark grey usecasesof Fig.9.2, leaving the rest for future work.

9.1.2 Arc hitecture

The systemwasdesignedo copewith seeral querytransformation phases
requiredto deliver atarget query sourcecode that shouldbe compiledand
run againsta speci ¢ physicsstoragebase.

We have devisedthree main modules,asseenin Fig.9.3: userinterface,
plan generatorand code generator. Eadch of these modules is described
more deeplyin the next sections.

The userinterfacedealswith the user'squery edition and interactively
noti es the user of incorrect syrtax. Internally, a Concrete Componerts
Graph is maintained and simultaneously mapped, usingthe obsenerspat-
tern, to a correspnding Abstract Syntax Graph, asdescriked in the last
chapter. We describe this module in more detail in Section9.2.

The Plan Generatorstarts by interpreting the Abstract Syrtax Graph
and transforming it into an Abstract Syrtax Tree (AST). Then, it runs
an algorithm that walks down the AST and generatesthe correspnding
algebraicquery plan (QP). Details are descrilked in Section9.3.

Finally, the query Code Generator looks at the algebraicquery plan,
optimizes it at the algebraiclogical level and generatesthe physical op-
erators. In the sequenceof that, a new algorithm generatesthe required
sourcecodeto be compiledand run againstthe storagebase. This module

142 CHAPTER 9. PROTOTYPE FRAMEW ORK - PHEASANT

B
‘—_-__\—_-——_

-—_._______‘
— L
“\k_‘\\- ey Query Btorage base
User _\

UndaRFeda

\ Physics Storage base
Expert Define UDFs

(=] (m]

Figure 9.2: Use cases- the use casesin dark grey are covered by the
prototype implemertation.

is strictly bound to the speci ¢ target framework. The query code gener-
ator is implemernted as a plug-in to our PHEASANT framework speci c
to BEE (seeAppendix B). Other plug-ins can be addedto deal with dif-
ferert target physicsframeworks without necessarilyimposing changesto
the rest of the query generationmodules. The Code Generatormodule is
descriked in Section9.4.

9.1. GENERAL OVERVIEW 143

Query

User Interface

ASG

Plan Generator

QP

Code Generator

Target Code

Figure 9.3: Generalstructure

9.1.3 Technology Used for the Implemen tation

In orderto test our hypothesis,we delivereda rst prototypeimplemerted
in the TCL/TK scripting languageon a Unix platform. We use extra
padagesfor dealingwith graphs,treesand visual widgets. The advantage
of ascripting languagdike TCL/TK over other structured languagess the
fast implemertation due to the simplicity of the languageitself and their
visual manipulation padages.It allowsalsoeasyportabilit y, which implies
that we canusethe sameproduct on other platforms. In our case the only
changeswill take place at the code generatorplug-ins. Newertheless,the
unstructured nature of the languagemakesit di cult to produceelegan
and clean code. The larger it gets, the more dicult it is to maintain.
Therefore, we suggestthat the next phaseof the engineeringlife cycle
delivers a product using a structured languagelike C++ or Java.

144 CHAPTER 9. PROTOTYPE FRAMEW ORK - PHEASANT

9.2 User Interface - The Visual Editor

This sectionexplainsthe architecture of the visual editor, which provides
the userwith an environmen for editing visual queries. This software deals
with the concretecomponerts and the concretesyntax graph, delivering
the correspnding ASG into the next architectural layers.

First, we justify the generaldesigndecisionstaken, basedon related
work done in Human-Computer Interface (HCI) and Visual Languages
(VL). Then we descrike the di erent modules required for our solution:
Graphical User Interface (GUI) and Abstract Syrtax Graph (ASG) gen-
erator. We concludethis sectionby discussingsomeproposalsfor future
work.

9.2.1 Related Work and Design Decisions

A good introduction to the implemenation of Visual Languageeditors can
befoundin [44]. There areseeral di erent ways to implemert them. One
option are so-calledfree hand editors, in which userscan draw whatever
they want on a virtual carvasand producea graphical bitmap asoutput.
This entails image processingand pattern recognition to understandthe
programmer's intentions by idertifying the graphical objects and their
relationships. (With text scannedfrom paper, the problem would be the
same.) This editor is the most exible solution, but, on the other hand,
it is very di cult to interpret the input of the user.

As HEP analysisimplies a clear symbology and query pattern, we do
not allow this exibilit y, but provide a prede ned set of graphical ob-
jects that can be used. Instead of allowing the speci cation of text,lines,
rectangles,or circles which are then scannedand parsedinto graphical
objects, we go further than that and we allow the userto specify already
the graphical objects/symbols of the query language. The meaningof the
pictorial elemetts is either already known or easyto learn, sowe apply an
incremernal parsing approat wherethe query elemeits are easily parsed
while being built. An internal spatial relation graph is generated.

At this stage,editors can be classi ed as:

Syntax-free - They are merely usedto erter visual queries,without
any syrntax concerned.

9.2. USERINTERFACE - THE VISUAL EDITOR 145

Synax-directed - They only allow the userto erter syrtactically
correct queries.

Syntax-assisted- They prompt the usersto write syntactically cor-
rect queries.

Syntax-free editors were not under considerationbecausewe needto
syntactically validate the query construction. We could leave the respon-
sibility to a syntax chedker module that feedsthe syrntax problemsbadk
to the editor after the query construction. But the problem of this ap-
proach is that becauseof all the syrtax errorsreturned bad, the userhas
to memorizethe syntax if he wants to have a lesstime-consumingquery
production phase. We warnt the userto realize when he is producing an
invalid query sertence.

Having declined the rst option, we are left either with a syntax-
directed or a syntax-assistededitor.

Syntax-directed editors enforcecorrectuserinputs. Inputs that con ict
with the given syntax are immediately rejected. These editors are ne
for situations where we do not have to deal with intermediate syntactic
states. It is much morecomplexto implemert theseeditorsif intermediate
statesoccur that are syntactically incorrect but potentially correct. If, for
instance,the Transformeroperatorin PHEASANT is left alone,we cansay
that the questionis incorrect. Howeer, it is potentially correct because
we can connect this operator to the selectionoperators and the result
particle operator. In our opinion, theseeditors are not the right approadh
for PHEASANT, asusersaregoingto have the sameproblemsaswith the
existing textual interfaces,only on a graphical level. As a consequence,
we have decidedto implemen a syntax-assistededitor, although knowing
that it is harder to dewlop than a syntax-directed one, as it is more
interactive. This meansthat it helps the userto arrive at a correctly
formed syrtax by giving hints. Incorrect constellationsof objects are not
rejectedoutright but are highlighted to indicate problemswith the query.
Fig.9.6 shavs the query from Fig.8.1in the layout of our editor. Note the
pop-up meru in the lower right cornerof the gure. This is usedto input
the before-metioned attribute and condition lists.

When dealing with languagesthat imply the use of the keyboard for
the input of text (for labeling, the speci cation of strings, or mathemat-
ical equations) and using the mouseto draw the graphics, this implies

146 CHAPTER 9. PROTOTYPE FRAMEW ORK - PHEASANT

that the programmeris constartly distracted. Together with that, the
repeated movemen of the mousepointer betweenthe \palette" to select
the graphical elemeits and the virtual carvas can causeusercomplairts.
Becauseof thesetwo reasonswe implemert pop-up meruson the drawing
site.

1
Concrete Comppnents Spatial Relationship Graph Abstract Syntax|Model
PN 7
Ta - N
Concrete->SRG SRG->AMS

Figure 9.4: Transformation from CSGto ASG

We must idertify two levels of syntax: Concreteand Abstract Syrntax.

The concretesyntax must include ewvery detail concerningvisual as-
pects of the language,whereasthe abstract syntax can safely ignore all
aspectsthat are not neededwithin the semartics de nition. This means
that the abstract syntax abstractsconcretesynbols and geometricdetails,
like sizeand position of objects.

In parallel to the textual languageparsing, the visual languagehas a
sequencef stepsthat involvesa three-stageprocess:

Scanning or lexical analysis - Someintermediate data structure
is necessaryto represen the pictorial structure of the diagram. The
physical layout is then scannedto produce a spatial relationships
graph (SRG), indicating the componerts of the diagram and their
relationships. It contains all graphical objects, but instead of con-
taining all individual properties, it represets the higher-le\el spatial
relations which hold betweenits objects.

Parsing or syntax analysis - The SRG is mapped to an abstract
syntax graph (ASG) to re ect the internal (logical) structure of the
diagram accordingto its visual language. Nodesand edgesin this
graph should correspnd to languageconstructs, but do not deter-
mine what theseconstructslook like.

9.2. USERINTERFACE - THE VISUAL EDITOR 147

Generation or semantic analysis - This phaseimplies the inter-
pretation of the logical structures accordingto the rulesfor semaric
description of the languageand the correspnding generation of a

target code and/or error report. We will concetrate on this topic
in the following sections.

9.2.2 The Arc hitecture of the Visual Editor

| User Input
Visual Editor v
Module GUl

Y

v

Rule - Schema
Manager = Manager

Abstract Syntax Graph Output
\ 4
Figure 9.5: Componerts of the Visual Editor
The Visual Editor of our implemerted prototype consistsof v e main

componerts: GUI, Spatial Relationship Graph (SRG) manager,Abstract
Syntax Graph manager,Rule managerand Sdhemamanager.

148 CHAPTER 9. PROTOTYPE FRAMEW ORK - PHEASANT

GUI

Fle Line Image Fill Edit Generate Group Text Grid Zoom [jooe Help

JH’? J JG|J*\'|JH|E| |J1| e Outline: |
olofol vyl EE =

N | =

(285,66 |[Move object |Helvetica [10] |Pheasant 1.0 z002
=

Figure 9.6: PHEASANT query layout

GUI is atypical vector graphicseditor, asit canbe seenon Fig.9.6. It
noti es the SRG managerewery time a concretecomponernt is inserted or
modi ed in order to update both the SRG and the ASG. Thesepadages
verify the correspnding syntax. In order to provide feedba& to the user,
they return the status through the messagevindow or by using colorsto
indicate the incomplete state of the query serience drawn sofar.

Someof the visual elemens have a secondlevel of detail through the
use of pop-up merus. With them, the useris able to specify condition
predicatesor extend the list of attributes represeted by the elemem, or
ewen selectthe inherert type (for exampleParticle or Vertex).

The layout is composedby a typical meru bar with pull-down options;
a toolbar, where it is possibleto selectthe seweral query componerns; a
carvas, wherethe query is edited; and a status bar with a correspnding

9.2. USERINTERFACE - THE VISUAL EDITOR 149

messageox.

SRG manager

Spatial Relationship Graph manageris a graph of geometricobjects like
descrikedin Fig.9.7. It simply dealswith insertions, updatesand removals
from the graph, leaving all the syrtax interpretation for the ASG manager
to which it communicatesthe changes.

ASG manager

This is a graph managerthat dealswith the syntax graph generation
derived from the graph grammar descrited in Chapter 8. This manageris
responsiblefor calling the rule managerand the sdhemamanagerto verify
the syntactical validity of the sentence.

It is possibleto implement a type-safeor a non-type-safedata model.
Our framework was designedto support the rst one. This way, it is able
to chedk and reject queriesthat will generaterun-time errors due to type
inconsistencies.

Rule manager

Although very primitiv e in our rst prototype implemertation, this man-
agercollectsa setof grammarrules (basedon our graph grammarspeci ed
in Chapter 8) to deal syrtactically with the componerts. This manageris
alsofed by a script during the initialization phase,that providesa list of
arithmetic constarts and user de ned functions (UDFs) that are consid-
eredto be valid.

In order to chedk the well-formednessof the text strings where the
userdescrikesthe query predicates(or conditions attributes) and the new
attributes description for ead visual componert, a special parser was
implemerted. It hasto deal with arithmetic inequality expressionghat
understandthe constarts and user-de nedfunctions.

Schema manager

To support the slight variations in the data schema of ead di erent ex-
perimert framework, this module acceptsthe sthema description (in the

150 CHAPTER 9. PROTOTYPE FRAMEW ORK - PHEASANT

__| Color
Position
Geometric > Label
Objects
X\ Status
L_| Size
Ellipse
Union P
- - Container
Intersection Set Symbols |_| Geometric
. Circle
Difference
Rectangle
Middle circle| | Line |
Broken
with circle Picture
1D
with circle %
Arrow
o histogram 2D
with diamond
Broken Simple 3D
with diamond

Figure 9.7: Meta-description of the concretesynbols

shape of a graph). The sdhema objects must obey to the basestructure
preserted in Fig.9.1.

9.2. USERINTERFACE - THE VISUAL EDITOR

151

| nserting N odest

Node: Run X AttList X Type
AttList =< fid BIGINTgfflagBIGINTg:: >
Type= Container

Node: Event X AttList X Type
AttList =< fid BIGINTgfexp SMALLI NTgfflagBlGINTg
Type= Event

Node: Particle X Attlist X Type
AttList =< fxf DOUBLEgfyf DOUBLEg >
Type= Physics Objects

I nserting Ar cs

Arc: Run contains Event

Arc: Event contains Particle

Arc: Event contains Vertex

Arc: Particlerefers Vertex using vertex
Arc: Vertex refers Particl e using ingoing
Arc: Vertex refers Particl e using outgoing

>

Figure 9.8: Specifying the shemain PHEASANT

9.2.3 Future Work

This languageeditor meetsmany of the requiremerns for e ective graph-
ical user interfaces. Human Computer Interaction here takes the main
role in increasingthe usability. Our rst prototype canand should be im-
proved on both the output of the visual languageand data visualization

by taking what this researt areahasto o er.

152 CHAPTER 9. PROTOTYPE FRAMEW ORK - PHEASANT

For instance, it is very well known that providing copying protocols
to produce duplicate fragmerts like cut-&-paste mehanismsreducesthe
time spert to reproducesimilar query fragmerts. A typical examplewould
be when the user speci es the list of predicatesof a selectionobject and
doesnot want to input them againin another similar selectionobject part
of the decg beingspeci ed. Another interestingideawould be to support
a list of template queries,wherethe userwould get a skeleton of a query
that he could Il in and/or expand.

9.3 The Generation of aLogical Query Plan

In this section,we descrile how we have implemerted the transformation
of the Abstract Syrtax Graph (ASG) into a valid logical query plan. The
ASG provided by the User Interface tool will be rst translated using an
intermediate step into an Abstract Syrtax Tree (AST), and then into a
logical query plan.

1 1 1
Abstract Syntax|Graph Abstract Syntax|Tree Logical Query Plan
AN 7
— N
ASG >AST AST >LPT

Figure 9.9: Generation of a logical query plan

The processof generatinga Logical Plan Tree (LPT) from the query
represeted in the ASG internal structure derived from the GUI applica-
tion, describked in the previous chapter, is split into two major steps. In
the rst one, the possibly cyclic graph is transformed into a tree, which
is easierto deal with. In fact, the algorithms to interpret the graph get
very complexand error-prone. In cortrast, handling treesis much simpler.
Our secondstep dealswith the translation of the tree into the correspnd-
ing algebraic operators, as predicted in the semanics description of our
languagePHEASANT QL.

9.3. THE GENERATION OF A LOGICAL QUERY PLAN 153

9.3.1 AST Generator

We now introduce intermediate transformation steps applied directly to
the Abstract Syntax Graph (ASG). At the momen, the ASG hasthe form
of a DAG. After re-writing it, we will have translated it into an Abstract
Syntax Tree (AST).

First, we presen our rst naive approad, asdescritedin [9], presen-
ing its drawbadks, then we presen an improved approad.

Rewriting the Visual Query with the Naiv e approach

The intersection and union operators - At the rst step of the query
- the collection selection, when more than two corntainers are linked by
the intersectionoperator - it is necessaryto unfold the graph structure in
order to be able to run the sematrtic rules for intersectionthat just deal
with two operators. The rule is visually explainedin Fig.9.10.

d d
a é c - C
| .
b
|
b
A) B)

Unfolding from A) to B) the QCollection graph with intersections or unions (represen ted by a circle)

with more then two op erators.

Figure 9.10: Unfolding the QCollection

Comparison operators - As descrited before,the Comparisonis a
binary operator that is linked with non-directed edgesto Selectionoper-
ators. This operator necessarilyclosesthe DAG, which is more easyto
deal with if we breakit up into atree.

154 CHAPTER 9. PROTOTYPE FRAMEW ORK - PHEASANT

While dealingwith this operator, the break-uprule dependson whether
both selectionobjects have to be dependernt on ead other or not. In the
rst case,we operate the decompmsition by usingthe transformation rules
depictedin Fig.9.11 on the left and middle side. If they are dependen,
we usethe transformation depicted on the right side.

As stated by the rule on the left of Fig.9.11,the closedDAG is broken
into a tree-like structure by making a copy Y' of the Y selectionobject
and connectingit asinput to the Comparisonoperator.

P

-
g %@)
7 B

Left side: Rewrite rule of the Compare operator with objects part of the same decay tree.

o

O

(

B)

®
5

in the three situations A) is transformed into B):

Middle: Rule for rewriting the compare operator between selection objects of dieren t decay chain trees.

Righ t side: describ es the rewriting rule for the compare operator when a "collision" occurs.

Figure 9.11: Naive rewriting of the comparisonoperators

When comparisonoperations are used between selectionobjects that
arenot part of the samedirect deca tree (have non-dependency),we copy
both selectionobjects, and two operator nodes are inserted accordingly
asit is depictedin Fig.9.11 (middle transformation).

In caseof "collision”, which meansthat the sameselectionobject is
being used by two or more di erent comparisonoperators, it should be
decompmsedone by one (seeFig.9.11,right transformation). The criteria
for the order of nestingis setin the implemenation phase.

Sample rewriting - A completeexampleof the rules de ned in this
sectioncanbe found in Figure 9.12,which is a rewrite of our rst example
in Figure 8.1 and also usesan object referencefrom the particle Pi* to

9.3. THE GENERATION OF A LOGICAL QUERY PLAN 155

its Monte Carlo courterpart.

1D

‘i‘h

Figure 9.12: The D* deca examplerewritten with a naive approat

Rewriting the Visual Query with a Non-defactorization approach

1D
“ ; .

~

M0\7ing to the closest common parental node

Figure 9.13: Rewriting the graphinto a tree by restructuring the compar-
ison nodes

156 CHAPTER 9. PROTOTYPE FRAMEW ORK - PHEASANT

The naive splitting approad is satisfactory for the collection queries,
but asfar asthe decg description queriesare concerned,this approadh
has the problem of causing an exponertial query plan explosion. The
de-factorization producesredundancyin the semarnics mapping, which is
moredi cult to dealwith for optimization purposes.The resulting query
plan, after the translation of the semaric translational rules, would be
extremelyine cien t. The natural visual factorization of the useris being
wasted this way.

In accordancewith the semartics description of the languagein the
last chapter, we can obsene that comparisonoperatorsrepresem purely a
selectionpredicate. Abstracting the syntax as proposedby our BNF like
grammar, although being designedfor formal purposes,still helpsus in
the implementation phase.

In fact, if we remove thesecomparisonoperators from their placeand
add their predicateto a conjunctive list to be applied to the root node,
the meaningwill keepthe same. This is another form of de-factorization.
The price to pay in this caseis that whentranslating the semarics we will
get a query executionplan with late selections.As a result, longer object
streamsare usedin main memory, data are kept unnecessarilydata, and
computational resourcesare wastedwith unnecessarylata manipulations.

In consequencef this line of thought, we can do ewen better than
that. We want to keepthe factorization. If we set a rule that movesthe
predicate to the closestparertal connectionnode in the tree, it is more
e cient sincethe comparisonalways implies a join of two branchesin the
query tree (seeFig.9.13).

9.3.2 Logical Query Plan Generator

Basedon the description of our mapping generator,we wereable to derive
a recursiwe algorithm that readsthe query tree.

This algorithm descendsrom the query tree root and walks down its
branchesuntil it readesthe leavesand transformsthe synax tree into a
correspnding algebraicquery plan.

The following pseudo-cde roughly represets the algorithm for map-

ping the deca tree (for simplicity reasonswe omit the part that translates
the collections):

9.3. THE GENERATION OF A LOGICAL QUERY PLAN

157

MapDeca y
Input: Node in the AST asnode
Output: Query plan sub-Tree

switc h node:

case
if (deriveType)= ! ()
childs = getChilds(! ()
tree= fg
foreach child in childs
mapchild = M apDecay(child)
if (tree= fg) tree= mapchild
else tree= setTred ;ftree;mapchildg)
setTreq ;childs)
return setTreq ;tree

if (deriveType)=)
childs = getChilds(! ()
if (mandatory(deriveTypg)) = True)
tree= setTredq ;setTreq ; QEvent))
foreach child in childs
tree= setTreq; treg
else
tree= setTredq ;setTreq= ; QEvent))
foreach child in childs
tree= setTreg= ; tree
return tree

if (deriveType)= 1)
if (mandatory(deriveTypg)) = True)
return setTreq ;

setTreq ;MapDecay);M apDecaygetChild())))

else
return setTreqd ;

setTreq ;MapDecay);MapDecaygetChild())))

else if (deriveTypg)= fg)
return setTreq ;setTred ; QEvent))

158 CHAPTER 9. PROTOTYPE FRAMEW ORK - PHEASANT

MapDeca y (cont.)

case ROOT
childs = getChil ds(ROOT)
tree= fg
foreach child in childs
mapchild = M apDecay(child)
if (tree= fg) tree= mapchild
else tree= setTred ;ftree;mapchildg)
setTreq ;childs)
return setTreq ;tree

casel |
return setTred ;setTreq);M apDecaygetChild(node)

case
parent = NewN odg)
child = M apDecay(getChil d(node)
return setTredparent; children)

As saidbefore,this approad wasusedfor a prototype implemenation.
Therefore, we beliewe there is still plenty of room for improvemen in
this phase. Deriving more elegan or improved algorithms is the possible
ewlution of this work.

9.4 Code Generation

In this section,we brie y descrile how we have implemerted the genera-
tion of code starting with a logical query plan and then optimizing it and
generatingthe physical query plan that is nally mapped into the target
code.

9.4. CODE GENERATION 159

Logical Query Plan Optimized Plan [Tree Target Source Gode

-

~

- -
~

~
~

- -

T -~ N
LPT >OPT OPT>TSC

Figure 9.14: Sourcecode generation

9.4.1 Query Plan Optimization

In this phase the initial logicalquery plan treeis re-written into an equiva-
lent, but moree cient expressiorusing transformation rules. This means
that it will be optimized into a newalgebraicquery plan and then mapped
into a correspnding physical executionplan that usesphysical operators.
We have left out the logical optimization from our prototype, sincethis is
an active researb areathat is beyond the scope of our thesis. It should,
newertheless,be consideredin the next phaseof the implemertation. A
good introduction to the topic can be found in [59].

Usually, in other databaseenginesto generatethe physical query plan,
there should be an optimizer to decideon the mapping: which selection
method to use,which join method, and whereto materialize or pipeline.
In our casewe have skipped the optimization and have mapped the query
plan tree directly to physical operators. This givesroom for future im-
provemerts that will have strong impact on the performance(but are not
relevant for the purposesof this thesis).

9.4.2 Target Code Generation

For ead of the algebraicoperatorswe have built a correspnding physical
operator, but in the future we needto add more operatorsto broadenthe
possibilities for physical optimization. Furthermore, as a typical charac-
teristic of a domain language,rather than interpreting our query plan, we
compile the plansinto an executablecode.

In order to implemernt this phase,we have beeninspired by the elegan
approad of Fegarasin the LDB databasesystem[51, 49]. He makesuseof

160 CHAPTER 9. PROTOTYPE FRAMEW ORK - PHEASANT

a stream-basedexecution engine (also called pipelining or iterator-based
processing)in a purely functional fashion. As descriked in his paper, this

technique borrows conceptsfrom the area of lazy functional languages
avoiding to usethreadsto implemern the pipelining.

The conceptis simple to grasp. A Streamis an ertity that cortains
a stream of tuples. It operateswith the main services:Open, Closeand
Next. It canbe of the type materialized, when storedinto secondstorage,
or suspended,while kept in memory

The operator algorithms return a tuple assoon asit is constructed. In
order to retrieve all the tuples, the algorithm is called seeral times.

The pipelining is then guararteed by a structure of an embeddedfunc-
tion, which is named suspendedstream, that for eat time it is invoked
without argumerts, it callsthe algorithm to construct the tuple. The fol-
lowing pseudo-cde, generatedwhen running a map algorithm that walks
down the physical plan tree, makesthis strategy eviden:

9.4. CODE GENERATION 161

Example of query code

TR
Query Predicates#
HitHHHHHH T
B ool predi(tuplet)
f if (Somedefined predicate)
return new boo(tr ue);
else
return new bool(f alse); g

B ool pred2(tuple t)
fig

B ool pred3(tuple tl; tuplet2)
f:g

HHHHHAHH A

Query Functions

HHHHHHHH AR

tuple f unction1()

freturn table scan(((Stream) stream[0]); &pred g

tuple f unction2()
freturn table_scan(((Stream) stream[1]); &pred?);g

tuple f unction3()
freturn NestedLoop((Stream) query[l];,(Stream) query[2];, pred3); g

HHHHE R

Query Streams

HHAAA IR

query[1] = (void)suspendedstream(&f unctionl);
query[2] = (void)suspendedstream(&f unction2);
query[3]= (void)suspendedstream(&f unction3);

162 CHAPTER 9. PROTOTYPE FRAMEW ORK - PHEASANT

A completedescription of the library of physical operator algorithms
that we have implemerted basedon Fegaras'work is descrited in Ap-
pendix B. The signature of these algorithms is de ned in Fig.9.15. As
we can seethere, the implemenations are a simpli cation of the algebraic
operators. In fact, the Nest algorithm is preparedto group-by the tuples
by evert identi ers and they already include the evaluation of the Reduc-
tion operator usually ass@iated with it in our query pattern (asdescriked
in Chapter 8).

table scan: Stream X Predicate ! Tuple

Union : Stream X Stream ! Tuple
I ntersection: Stream X Stream ! Tuple
Dif f erence: Stream X Stream ! Tuple

Unnest: Stream X Path X PredicateXOuter ! Tuple
NestedLoop: Stream X Stream X PredicateX Outer ! Tuple
Nest: Stream X HeadX AggregateFunction ! Tuple

Figure 9.15: Physical operators: Signature of the Table-scan

Interfacing with the Storage Engine

The experimert's framework dewelopers are responsible for the designof
the storageengine. The function of this layer is to deal with persisten
data and their transfer between main and secondarymemory We will
abstract from the way HEP storageenginesdo bu er managemen and
how they deal with someindexing to retrieve the data.

In orderto be ableto coupleour operator's Streamswith the BEE (see
Appendix B) storageengine,we have designeda\quick and dirty" solution
which is to usean APl on top of BEE and maintain an Evert bu er with
the FIFO (First In First Out) rule. The ideais then to make use of a
hybrid solution of similar conceptsto Eagerand Lazy pointer swizzling

9.4. CODE GENERATION 163

BEE API

steam
>

<evt,unnested object

obi Event Blob -
ject -
U - - Event Blob
nnest - = getEventBlob(id) vt
e

getunnested(event,object,position)

Stream Event

<evt>)) Event —

<1435> infNextEvent(id)) B —

<1440> @ getEvent(id,positioh)

<1444> @ CO”eC On
collection ——

—_—————
event —_—

Unnest - getNextCollection()

getUnnested(collection,event,position) @

<collection>
e

[Stream Collection] ——
getNextCollection

@

(=]

Figure 9.16: Interacting with the storageengine

[1]. This meansthat before unnesting an object cortained by an event
for the rst time, the stream ewokesa method to load the specic evert
object from disk into main memory All the persistent pointers this object
cortains in the shape of OIDs (referencingparticles, vertexes,and others)
are transformed (swizzled) immediately into main memory pointers. At
the sametime, the referencedobjects are all copiedinto the Event bu er.
The way data is clusteredmakesthis phasevery easy sinceall the related
objects of the event are usually storedtogetherasa blob not only in BEE,
but alsoin seweral other analysisframeworks.

The rest of the data, like the Collectionsor the Everts, are dealt with
by lazy swizzling, meaningthat no pointer is swizzledunnecessarilyonly

164 CHAPTER 9. PROTOTYPE FRAMEW ORK - PHEASANT

upon request.

In order to better understand our API's function, let us follow an
examplelike the one descriked in Fig.9.16. It starts with the stream of
collection objects that is called by the unnest operator. This activates
the method getNextCollection() in our API(1), which, in turn, calls the
getNextCollection (2) method on the BEE side. This is goingto retrieve
from the classextent collection (materialized in secondstorage)the next
collection object which is then returned to the stream.

The unnest operator (3) will now request(getUnnested)for the next
Evert object cortained in the currertly selectedcollection object. This is
adhieved by giving the collection ID and the position in the set of Everts.
The API will retrieve (4) the evert from the Evernt classextert from the
BEE framework (which is indexedby the collectionID to which this Evert
belongs).

The stream of Everts will inform the API (5) that the Event is re-
questedewery time its method Next is called. This way, the API veri es
whether it already existsin the evert bu er. If this is not the case,the
API callsthe getEvenBlob (6) that requeststhe correspnding Evert blob
from the BEE framework. It should be stored on secondarystorageand
possibly indexed by the evert ID (if the framework dewelopers designed
it correspndingly). The objects are eagerly swizzled and are ready in
memory to be accesseddy an unnestoperator in (7) or by the rest of the
pipelined branchesof the query plan.

9.5. SUMMARY 165

9.5 Summary

In this chapter, we focusedon giving a top-down view of the seeral ar-
chitectural modulesrequired for our prototype framework.

Visual Editor - Dealswith the interfaceto the userand generates
an ASG asthe input to the following module. HCI considerations
were taken into accourt while designingthe rst PHEASANT pro-

totype. We have presened our reasoningand decisionsthat took

previousresearb in this areainto accoun. At this level, optimiza-

tion can be readed by exploring user interface techniqueswith a

strong feedba& from the users. It is an ewlving process,like any

HCI software engineeringproject. Therefore,we suggestmoreitera-

tions in the software engineeringlife-cycle for further dewelopmerns

in this area.

Plan Generator - responsiblefor transformingthe Abstract Syrntax
Graph into an executionplan. We have preserted se\eral algorithms
as solutions. First, we have introduced a naive approad, and then
an improved version. As future work, we expect to derive better
algorithms.

Code Generator - We detailed the transformation of the query
plan into a valid sourcecode that can be compiled and run against
the physicsstoragebase.

166 CHAPTER 9. PROTOTYPE FRAMEW ORK - PHEASANT

Part IV

Evaluation of the Research

167

Chapter 10

Evaluation

In previouschapters, we have detailed the new methodology proposedby

this thesis for improving the user's performanceat the analysis phase.
It is necessaryto ewaluate the usability of the proposedDSVQL. In this

chapter, we are goingto descrilke how we have structured our assessmen
to do so.

To support our claims that with our methods we manageto improve
the e ciency, reducethe error rate and have a steeplearning curve, we
have to perform a completeand unbiasedevaluation of our language,com-
paring it to a real-life programming analysisframework. During the de-
velopmen of our prototype, two frameworks deweloped by the Hera-B
collaboration were considered:ARTE [4] and BEE [55]. The rst option
had multiple portability problemsand lacked technical support like a doc-
umertation, which forced usto adopt the secondone. BEE makesuse of
C++ asa query language.

Next, we presem how we have systematizedthe evaluation processto
provide quartitativ e and qualitative information on the usability of our
language.

In section10.1,we discussthe conceptsand the related work on inter-
faceewaluation that hasdeeplyin uenced ours. In section10.2,we presef
the formal de nition of usability accordingto 1ISO 9241-11.Section10.3is
dedicatedto detail the tasks we have programmedto lead the experimert
to its end. In sessionl0.4, we presem our interpretation of the results
obtained in the assessménand, nally , our conclusions.

169

170 CHAPTER 10. EVALUATION

10.1 Related Work

An interestingwork on human factorsin the evaluation of query languages
can be found in [82]. A surwey in recer visual query experiencesis con-

tained in [24]. A complete evaluation of a comparisonbetween a visual

query languagenamed Kaleidoquery and OQL can be found in [74]. We

have made useof these papers as major guidelinesto our experimert.

10.12.1 Human Factors

Togetherwith physical and perceptual activities, visual query languages
involve cognitive activities like learning, understandingand remenbering.

Experimerters in human factors have deweloped a list of tasksto capture

particular aspects. In [82], the authors proposethe following list:

Query writing - usersare given a questionstated in natural language
and have to write a query in the given query language.

Query reading- usersare givena querywritten in the querylanguage
and asked to write a translation into a natural language.

Query interpretation - usersare givena query in the query language
and a printed databasewith the data lled in. They are asked to
nd the result of the query.

Question comprehension- usersare given a questionin a natural
languageand a printed databaseand are asked to nd the data
asked for.

Memorization - usersareaskedto memorizeand reproducea database.

Problem solving - usersare given a problem and a databaseand are
askedto generatequestionsin English that would solve the problem.
The questionsshould be answerable with the database.

To evaluate thesetasks, we can usedi erent kinds of tests:

Final exams- Test how easily a query language can be learned.
These examstake place at the end of teadiing the languageunder
ewvaluation.

10.2. A DEFINITION OF USABILITY 171

Immediate comprehension- Help idertify why particular learning
problemsoccur. They are given during teaching, immediately after
somefunction has beentaught, to determine whether the partici-
pants can use the function, given that they know it is the oneto
use.

Reviews - Help idertify why particular learning problems occur.
They are given during teaching and cover functions taught up to
that time. The participants are required to know which function to
use.

Productivity - Tests of the query languageuse by \skilled" users.
They test how well the languagecan be used after somepredeter-
mined level of learning has beenattained.

Retertion - Testshow easya query languageis to remenber: how
well it can be used by people who have beenaway from it for a
period of time.

Re-learning- Testshow easya query languageis to relearnby users
who have beenaway from it for a period of time and have forgotten
someof it.

Testingdi erent tasksin the languageusageis interesting, but to per-
form an exhaustiwe evaluation of them would be very expensiwe. Therefore,
we conceltrate on the critical activities. In the caseof Pheasatis ewalu-
ation, we are interestedin the task of query writing and problem solving.
This is justi ed by the fact that the main function of our languageis to
provide the userswith a tool that speedsup code generation. We want
to know how easilyit is to learn and use. Therefore, we will restrict our
ewaluation to the rst three tests.

10.2 A De nition of Usabilit y

As speci ed by ISO 9241-11, usability is:

11SO economicrequiremerts for o ce work with visual display terminals (VDTSs),
guidanceon usability 1998

172 CHAPTER 10. EVALUATION

\The extert to which a product can be used by specied usersto
achieve speci ed goalswith e ectiveness,e ciency and satisfactionin a
speci ed corntext of use".

Measuring e ectiv eness meansto determine the accuracyand com-
pletion when performing queries.

E ciency measuremenis relatedto the level of e ectivenessacieved
at the expenseof various resources,suc as mertal and physical e ort,
time, nancial cost, etc. E ciency is more commonly measuredin terms
of time spernt to completea query.

When measuringsatisfaction in use it meansfreedomfrom incon-
veniencesand positive attitude towards the use of the product. How
comfortable doesthe userfeel while using the system?

10.3 The Evaluation

Subject recruitment

{

Task Preparation

{

Pilot Session

T
Y
Training Session

{

Exam

Evaluation Sessio,
per language

per group

i

Final Questionnaire

!
Y

Analysis of results

Figure 10.1: The evaluation processsteps

10.3. THE EVALUATION 173

As already mertioned, our goalis to assertthe usability by evaluating
the error rate, user satisfaction, and time to write a query.

The stepsof the ewvaluation processare summarizedin Fig.10.1. The
wholeprocessstarts with the Participan t Recruitmen t, wherethe users
are analyzed and grouped into clear categories. This way,the variables
concerningthe userpro le that will leadto di erent results for di erent
groups are cortrolled. This step is followed by the Task Preparation .
The aim hereis to organizethe evaluation by determining which tasks
have to be done and which tests are elaborated in order to provide the
proper results. This will generatethe information requiredto be analyzed
afterwards. The next stepisthe Pilot Session, which is meart to simulate
the exam and test that the material for the training and the ewaluation
proceduresis well organized. The main advantage of this rehearsalis to
ched that the time constrairts and other possibleexternal variableslike
proper equipmen are cortrolled and do not interfere with the results.

Onceewerything is tested, we proceedto the assertion,which we called
Evaluation Session, for eat group and languagebeingcompared. First,
the Training Session will introduce a language. At this stage,the Im-
mediate Comprehensionand Review tests will already take place while
introducing the featuresof the language.

The nal examsof learning, in the Exam Session, will involve query
writing activities. This sessionimplies obsenation and recording of the
participants' activities like completion times and error rates and a ques-
tionnaire. The goalis to determinethe easines®f learning.

After ead group has been ewvaluated in the di erent languages,the
participants are asked for a debrie ng in the form of a questionnaire. The
goal is to obtain the user's perspective of the comparison between the
languages.

From [24] we are advisedthat in orderto evaluate unbiasedly the users
should test the sameervironment and asrealistically as possible.

10.3.1 Recruitmen t of Participan ts

Accordingto the cortext of HEP experimerts we devisethree typesof per-
sonsinvolved: informed programmers(Inf-P), uninformed programmers
(non-1-P) and non-programmers(non-P). Programmersare those familiar
with computers and regular usersof programming languages(C, C++,

Java or Fortran). This group can be subdivided in informed (if they have

174 CHAPTER 10. EVALUATION

already programmedwith the presen analysisframework) or uninformed
(if they have not). Non-programmersare familiar with computers and
operating systems,but have little experiencein programming languages
and have not usedany form of physicsdatabaseinterface before?.

We suggestthe usageof two di erent groupsof programmersbecause
the informed onesmay introducea bias on the learning phaseof the com-
pared query methodologies. This assumptionis taken into accourt even
if informed programmersand non-programmersare the majority of the
population in the Hera-B experimert (although this proportion is not
necessarilythe samein other experimerts).

In order to place ewery participant in the proper group, they were all
interviewed and their previousexperiencewas analyzed,avoiding this way
the bias of a self-ealuation.

We will now detail the stepstaken for the comparisonof both Pheasan
and BEE/C++ framework.

10.3.2 Task Preparation

Johnson[63]suggestshat six individuals per subsetof the population is
the minimum requiredfor a cortrolled experimert. Of courseit is sensible
to take a larger number, but the costsshould be kept to a minimum. The
task of gathering three groups of six personsin a HEP researt lab is
already nortrivial. All the participants should have a degreein physicsor
be nearits completionat least, and they should be skilled in experimertal
analysis. A basicknowledgeof programming conceptsis mandatory, since
this subject is taught in the rst yearsof the physicscourses.
Introducing one query systemto the whole group of participants and
only afterwards the other query systemcanleadto the situation of know-
ing the rst systemto in uence the results on evaluating the other. In
order to reducethis biasin the results we have to split the group in two.
This way, we reducethe in uence of the rst languagewhile preseting
the second. Mixing the three groups might lead to new variablesin the

2Usually, these are found among students newly introduced to the ervironment
like summer students or studerts starting their thesis. It is alsocommonto nd senior
physicistswith very little experiencein programming languagesand the new generation
of analysis frameworks. A possibledescription of the system actors and their role in
High Energy Physics can be found in [66].

10.3. THE EVALUATION 175

ewvaluation that are hard to track. Therefore,we have to organizeat least
six sessionswith ead group taking part in two sessions.
The featureswe want to have evaluated are:

Query stepsin Pheasan vs the object-oriented coding
Expressinga decay

Speci cation of Itering conditions

Vertexing and the usageof user-de nedfunctions
Aggregation

Path expressiongnavigational queries)
Expressingthe result set

The expressienessof user-de ned functions

10.3.3 Pilot Session

Our ewaluation technique was tested with two individuals (two physics
experts) in order to verify it and to test the teaching materials and ques-
tionnaires. This also helped to avoid (or to reduce the risk) that the
ewaluation had to be redonefrom scratch becauseof unforeseerproblems.

10.3.4 Training Session

Obviously, due to the complexity and the time constrains, we cannot
teach the completeC++ query languageplus the interface of the analysis
frameworks' libraries. We have to focuson presening examples(6 exam-
ples), and on the correspnding explanation of the code that represeis
eat of the featuresto be ewvaluated. The individuals should try the fea-
tures by designinga similar query. The last query should make useof all
the featurestaught in the session.

Murray[74] suggeststhat the participants should give themselhes a
mark for their feelingof correctnesf their trial. This introducesthem to
the systemof auto-marking. Besides,it helpsthe trainer to infer if there
are di culties experiencedand an extra explanation is required. This
sessiorshouldtake the time requiredfor eat group to understandthe six
examples.

176 CHAPTER 10. EVALUATION

10.3.5 Evaluation Session

a) Evaluation Queries

In this phase,we ewaluate the participants’ performancein query writ-
ing. Every participant hasfour queriesin English to be rewritten in the
previouslylearnedlanguage.The subject makesa self-assessmerof his re-
ply rating his feelingof the correctnesof the answer. The ratesaretotally
correct (TC), almost correct (AC), totally incorrect (Tl), not attempted
(NA). The conditions are equal for ewery individual in the experimert.
For eadt of the queries,we measurethe time taken to reply them.

b) Questionnaires
After eat sessionthe participants areaskedto judgethe intuitiv eness,
suitability and e ectivenesof the query language.The goalis to evaluate:

Overall reactions- to obtain an overall reactionto one of the query
languagesthrough queries.

Query languageconstructs- with the participants rating how easily
speci ¢ aspectsof the query languageare to use.

After the tests are completed, the participants are asked to compare
the two query languages. It is rated which query languagethey prefer,
and to what extert.

Query languagecomparisons the participants are asked to compare
speci ¢ aspectsof both querylanguagesand rate the preferenceshey
have.

Participants’ commerts - allows the participants to commen freely
on the query language.

Sincewith the evaluation questionnairewe can only identify problems
but not infer how to solve them, we askthe participants to cortribute cre-
ative commerns. Sometimesmprovemerns are obvious and the commerts
canbefruitful. Therefore,after the evaluation sessiorthe participants are
askedto write down informal commernts and suggestiongor improving the
language.

10.4. RESULTS 177

10.4 Results

In this section,we summarizethe relevant results of our evaluation tests.
First, we deal with e ectivenessby having a look at the test results with
regardto the errors producedby the userwhile interacting with both eval-
uated approades. Then, we will descrile the resultsrelated to e ciency,
which are mainly concernedwith time measuremets. Finally, we will
descrike the results concerningthe user satisfaction.

Unfortunately, due to the fact that the Hera-B experimert was over
before our assertion,we did not manageto gather the expected number
of scientists for our assertion(two Non-P, one Non-I-P and two Inf-P). A
greater number of subjects would meana higher certainty on the conclu-
sionsand a lower error rate. Newertheless,it is still a strong indicator.

In order to reducethe variablesthat could in uence the results, the
querieswere explainedorally by an expert. This reducesthe requiredin-
terpretation time (which has a signi cant impact, especially in the rst
group, sinceit is lessexperienced). Code re-usagewas not allowed, al-
though they could useall the necessarydocumenation and esgecially the
notesfrom the training session.

10.4.1 E ectiv eness - Errors

Analogousto Reisner's[82] proposal, we gradethe queriesby:

5 Correct

Minor data error, will not retrieve the completeresult.
(e.g someresults missing)

3 Minor languageerror, e.g. misspelling and punctuation

2 | Error of substance;valid queriesthat producewrong answer

1

0

IN

Error of form, invalid query
Not attempted

As it canbe obsenedin the histogramsof Figs.10.2and in more detail
in Fig.10.4, while using C++ as a query language, the error rate was
tremendous. We must state that the userdid not have any sort of feedba&
from the systemexecutionin orderto spot the mistake and correctit before
it cameto the hands of the evaluator. In his daily life, the usertries to
executethe algorithm and watches the result data after the execution.

178 CHAPTER 10. EVALUATION

C++/BEE tests

100,00% 1
90,00% 1
80,00%1
70,00% 1
60,00% 1

B Incorrect
] Correct

50,00%

40,00%-
30,00%

20,00%

10,00%

0,00%-

Non-Pro- Not-informed Informed
grammers

Figure 10.2: E ectiv enessC++/BEE: Huge error rate.

Then, in a cyclic way, he correctshimself and runs the query against the
storagebase. As we have claimed in chapter 4, this is one of the main
reasonswhy the query generationin the physicsanalysisphaseis sotime-
consuming.

In Fig.10.3and Fig.10.4, we can also obsene that di erent groups of
usersget di erent results. As expected, their quality is directly propor-
tional to the user's experience. Someof the most complex querieswere
not ewen tried due to the fact that they were too dicult for usersun-
experiencedin C++, which had just 2 hours of training (obviously not
enough).

As far as the Pheasam Query languageis concerned,the results are
much more promising. As the query medanismsare much simpler and
cortrolled, we do not obsene invalid queries,and only afewwronganswers
(which canbe explainedby someinexperienceof the usersin doing analysis
itself).

Generally the results shav that the userdid not have to essetially
changethe way he thinks about the query generation,which meansthat

10.4. RESULTS

Pheasant tests

100,00%

90,00%:

80,00%

70,00%:

60,00%

50,00%

40,00%

30,00%

20,00%:

10,00%

0,00%-

Non-Pro- Not-informed
grammers

Informed

M Incorrect
] Correct

Figure 10.3: E ectiv enessPheasat Huge correct rate.

179

we have reated the goal of introducing a query languagecloserto the

physicist's conceptuallevel of analysis.

180 CHAPTER 10. EVALUATION

BEE/C++ N-P | N-I-P | Inf-P
Correct
Minor data error 12.5
Minor languageerror 20 50
Wrong answer 37.5| 20 25
Invalid 25 20 12.5
Not attempted 375 20
Totally incorrect 100 | 60 37.5

Figure 10.4: Error analysisin BEE framework (percern values)
Pheasamn N-P | N-I-P | Inf-P
Correct 875, 80 87.5
Minor data error
Minor languageerror 20 12.5
Wrong answer 125
Invalid
Not attempted
Totally incorrect 125 O 0

Figure 10.5: Error analysisin Pheasanm (percen values)

/| BEE Non-P | Non-I-P | Inf-P Mean
Structuring the query /1 /1 14 2
Di erent data shemafeature /1 /1 /3 /1.7
Expressinga decy /1 /2 2 /1.7
Expressing Iter conditions /1 /2 /4.5 /2.5
Expressingand using vertexing /1 2 /4 /2.3
Expressingand using UDFs /1 /3 /5 /13
Path expressions /3.5 /2 /5 /3.5
Expressingthe result set /1 | 2 /3.5 2.2
Mean /1.3 /1.9 /3.9

Figure 10.6: Languageconstructsanalysis: Subject evaluation. Scalefrom
1(worst) to 5(best)

10.4. RESULTS 181

10.4.2 Eciency - Resulting Times

Training Time (minutes)
140
130+
120+
110
100+
90
80+
70
60+
50
40
30+
20
10+

] C++/BEE
[Pheasant

Non-Pro- Not-Informed Informed
grammers

Figure 10.7: E ciency of C++/BEE vs. Pheasaml Lesstraining time
required.

From our time analysis (Figs.10.7,10.7 and detailed in Fig.10.9), it
becomesclear that more time hasto be spent learning and using C++
and BEE than with Pheasah This can be justied by the complexity
of C++ and the BEE library. At the sametime, the test participant
had lesscon dencein the quality of his/her query (seealsoFig.10.10and
Fig.10.9). This subjective impressionis con rmed, as we have seen,by
the huge error rate when using BEE, Figs.10.4and 10.5.

In Fig.10.6we have givenan excerptof a list of featuresneededn HEP
analysis. The test participants were supposedto rate how they were sat-
is ed with the realization of ead featurein the correspnding framework.
Our goalwasto idertify potential weaknessesf eat framework.

182 CHAPTER 10. EVALUATION

Total exam time (minutes)

120
110+—
100+—
90+
80—
70—

] C++/BEE
60— M Pheasant
50—

40—
301—
201—

Non-Pro- Not-Informed Informed
grammers

Figure 10.8: E ciency C++/BEE vs. Pheasatt Much lesstime to com-
plete the task.

10.4.3 User Satisfaction

The enthusiasmtowards the languagewas signi cant. The seeral com-
merts focusedmore on implemertation issueso improve interactivity and
did not criticize the languageitself. This is a typical situation in userin-
terfaceswhen dealing with prototypes. It is explained by the fact that
the prototype needsto ewlve into the next engineeringlife cycle phase
to result in a properly engineeredsoftware product. Only this way the
product is able to provide a real analysisenvironment and the user can
compareit in his daily life with the other alternative solutions.

Although the systemexperts (a minority in atypical HEP experimert
analysis) recognizethat the solution is a more comfortable approad for
analysis,they still worry that the query tool might be lessexpressie. In
order to conrm or reducethese fears, we proposeto carry out further
tests of Productivity , asdescrikedin 10.2.

Someof the most relevant commerts are listed in the following:

\Pheasart should reusemy previous queries,with C++ | just re-

10.5. SUMMARY 183
Non-P C++ BEE | Pheasan
Training time (hours:minutes) 2:15 1:05
Mean total examtime (hours:minutes) | > 2:00 1:35
Mean con dence/query (5 very=0 not) 1 3,5
Non-I-P C++ BEE | Pheasart
Training time (hours:minutes) 1:20 1:15
Mean total examtime (hours:minutes) | > 2:00 0:40
Mean con dence/query (5 very=0 not) 2 4
Inf-P C++ BEE | Pheasan
Training time (hours:minutes) 0:20 1:35
Mean total examtime (hours:minutes) 2:00 0:35
Mean con dence/query (5 very=0 not) 35 4,5

Figure 10.9: Time analysis- The result times were rounded to multiples
of 5 minute units.

edit"

\The user interface could be similar to a Wizard of a Microsoft

product”

\lI think the tests should be donewith full executionernvironment"

\Is there a way to script my query? | have the feeling sometimes
it would speedup...With complexrepetitive things the mousetires

me.

From these commerts we can infer, for instance, that a query reuse

medanismshouldbe provided in a nal implemenation solution. Also, a
query history medanism wherethe user can browse on past queriesand
respective solutions, is an extra feature which might have a great impact
on user satisfaction.

10.5 Summary

In this chapter, we have detailed the procedureto validate our initial
usability claims.

184 CHAPTER 10. EVALUATION

Confidence (low 1 to high 5)

4,5
4
3,5
3
2,5 [C++/BEE
5 [l Pheasant
1,5
1
0,51
Non-Pro- | Not-Informed | Informed
grammers

Figure 10.10: E ectiv enessC++/BEE vs. Pheasat More con dence
from the user.

Let us now summarize our evaluation. In terms of E ectiv eness,
Pheasam providesthe userwith atool that is more accurateand complete
than the other solutions. When looking at E ciency the presen running
approadies,we have a clear evidencethat lesstime is usedto achieve the
samegoal. Generally the Satisfaction in use washigherwith Pheasan
The only exceptionto this were expert users,who feel very familiar with
their day-to-day tool and requestfurther tests on the expressie power of
the languageby trying it out in di erent experimert conexts (leading it
to its extremes).

Chapter 11

Conclusions

In this sectionwe rest the case. First we will give a quick summary and
conclusionsof the thesis. Then we state what wereour major cortributions
and we end with suggestiondor future work.

11.1 Thesis Summary

This thesis had the main goal of preserning a solution for improving the
userproductivity in HEP analysis/data-mining phase.In orderto do that,

we have started by carefully understandingthe cortext and the traditional

procedure of the physicist while analyzing the data. This implied gath-
ering widely dispersedinformation, justied by the fact that no serious
studies have beendone so far, and by the fact that any documertation

concerningthis phaseis typically scarceand inconclusiwe.

Two key conceptsfrom other researb areaswere taken into accoun
when proposingthe solution. From a surwey in the areaof Visual Query
Systems(VQL), we concludedthat hybrid VQLs werethe onesthat suited
best our requirements. From the areaof Domain Engineering,we derived
a procedureto designand dewelop our languagethat was suited to this
speci ¢ domain wherethe generalpurposeapproad is traditionally prob-
lematic.

By conbining thesetwo concepts,we have proposedto approad our
problem by deweloping a declarative Domain Speci ¢ Visual Query Lan-
guagefor HEP analysis.

With our language,which we named PHEASANT QL, we introduce

185

186 CHAPTER 11. CONCLUSIONS

an abstraction level in the system. As a consequencethe useris no longer
responsible for the performance, and the computer sciertist is able to
optimize it without interfering with the useractivities.

The work did not stop here. Proposinga DSVQL necessarilyentailed
proving that it was a feasibleand usableapproad.

From the point of view of feasibility, we have proposeda notation that
usesobjectsfrom the conceptualmodel, not from the logicalmodel (asit is
usualin other languages).We have formally de ned the languagenotation
by mapping it to our de ned algebra(basedon relational algebra). The
next step wasthe implemertation of a prototype that is able to deal with
this languageand to generatethe queriesin a target languagethat will
run against the physicist's databasewhen compiled and executed. The
architecture of this systemand somedesignoptions weredescrited in this
thesis.

The nal stepwasto provethat our approad improvesproductivity. In
Human Computer Interfaces,this is known asevaluation of the language's
usability. In order to do that, we have organizeda complete evaluation
sessiorand determinede ciency, e ectivenessand satisfactionin use. The
ewvaluation corroboratesour hypothesis.

As future work, we proposeto useour framework to improve the e -
ciency of the systemby deriving better algorithms (in order to be faster
and to uselessbandwidth and memory).

11.2 Contributions from This Thesis

The problem is very well-known in the area. To our knowledge, before
this thesis was written there was no real attempt to tackle the problem
in sud a global and methodical manner. Therefore,during our thesisar-
gumertation, we beliewe to have introducedtoolsto solvwe a long-standing
guestion: How to improve performancein the analysisphase?

As a major cortribution for both computer scienceand High Energy
PhysicsComputing, we have openedup a new application area,a domain-
speci ¢ visual query languagefor HEP, and thoroughly exploredit. This
canalsobe interpreted asa practical application of computer scienceools
to solwe a problemin High Energy Physics.

Instead of adopting a bottom-up approad for designingthe solution,
wheretuning and hadking legacy systemswould be the only way to pro-

11.3. SUGGESTIONSFOR FUTURE WORK 187

Figure 11.1: Researb areas

ceed, we decided for a top-down design. With our approad, we have
provided the HEP comnunity with the conceptof a unifying framework.
This framework combines se\eral areasof knowledgein computer science
researb (seeFig. 11.1): physics computing, databases,human certric
interfaces, linguistics, software engineering(with domain-speci ¢ model-
ing), and the intersecting areasof query languagesand visual languages.
The main designstrategy wasto proposea way to raiseabstraction, mod-
ularizing the analysisframeworks, designinga new languageasa exible
query tool, and introducing possibilities for optimization. Thus, we have
designedan ambitious framework by using a new software engineering
methodology[§, and we have validated most of the ideasthrough the im-
plemenation of a prototype.

11.3 Suggestions for Future Work

In our opinion, our work can and should be extendedand ewlved. Given
the methodology and the di erent phasesin the query processingthat
wereintroducedby the proposedframework, we have establishedthe foun-
dations and openedthe doors to the next phase,i.e. to study, explore
and derive better or superior algorithms at the di erent stages.We have
already proposedse\eral directions in the thesis, in the dierent topics
approadied, as future researb. We then summarizethese proposals:

188

CHAPTER 11. CONCLUSIONS

Language Design

At the level of the query languagedesign, which is always an
interesting subject, the potertials for optimization are promising.
Starting with the languagenotation, passingby the de nition of
semairtic rules that optimize before translating into the algebraic
notation, and nally the syntax translation itself. For instance, se-
martic errors can be already ltered out, releasingthe burden of
the query plan optimizer to do it. This entails moving from a sim-
ple syrtax translational approad to a more operational approad,
exposing the semanic cortent to a more clewer virtual macdine for
semairtics optimization.

Framew ork Design and Implemen tation

At the framework level, there is also a huge potential for opti-
mization. More work can be doneat the userinterfacelevel (human
interfacesarea), intro ducing more techniqueslike undo-redo, query
history medanism, etc. We can also proceedwith the algebraic
optimization and investon deriving new physical operatorstogether
with the physical plan optimization. Finally, we caninveston evalu-
ating the storageenginesperformanceand designwhenintegratedto
Pheasah Evertually, giventhe query pattern that we have already
studied, it will help us on determine the best approad.

Part V

Bibliograph vy

189

Bibliograph y

[1] G. M. A. Kemper. Object-Oriented Database Management: Appli-
cations in engineering and computer scien®@. Prertice Hall Interna-
tional Editions, Englewood Cli s, New Jersey 1994.

[2] R. Agrawal, N. Gehani, and J. Srinivasan. Odeview: The graphical
interfaceto ode. Proc. ACM SIGMOD conf., May 1990.

[3] A. Alashqur, S. Su,and H. Lam. Oql - a query languagefor manipu-
lating object-oriented databasesProc. 15thVLDB Conf. Amsterdam,
pages434{442,1989.

[4] H. Albrecht. The computing model for hera-b. Proc. CHEP'97,
Berlin, edited by DESY Hambuig, 1997.

[5] H. Albrecht and et al. Argus: A universaldetector at dorisii. NIM,
pagesA275:1{48,1989.

[6] V. Amaral, A. Amorim, and et.al. Operational experiencerunning the
herab-b databasesystem. In H. Chen, editor, Proceadings of CHEP
2001, International Conferene on Computing in High Energy and
Nuclear Physics,Beijing, P. R. China, pages396{397.SciencePress,
Septentber 2001.

[7] V. Amaral, S. Helmer, and G. Moerkotte. Designingand implemert-
ing a new abstraction layer to optimize the hep analysis process.
IEEE Conf. Record of Nuclear Sciene@ Symmsium NSS, Portland,
OR, USA, pagesN26{104, October 2003.

[8] V. Amaral, S. Helmer, and G. Moerkotte. A domain speci ¢ visual
qguery languagefor the high energy physics ervironmert. In J.-P.

191

192 BIBLIOGRAPHY

Tolvanen,J. Gray, and M. Rossi,editors, 3rd Workshopon Domain-
Speci ¢ Modeling, An OOPSLA 2003Workshop,Anaheim, CA, USA,

pages9{16. Jyvaskyla University Printing House, Finland, October
2003.

[9] V. Amaral, S. Helmer, and G. Moerkotte. Pheasamt A physicist's
easyanalysistool. Technical Report of the University of Mannheim:
8/03, 2003.

[10] V. Amaral, S. Helmer, and G. Moerkotte. A visual query language
for hep analysis. IEEE Conf. Record of Nuclear Sciene@ Sympmsium
NSS, Portland, OR, USA, pagesN26{105, October 2003.

[11] V. Amaral, S. Helmer, and G. Moerkotte. Pheasamt A physicist's
easyanalysistool. In J. Carbonell and J. Siekmann, editors, LNAI
Lecture Notesin Arti cial Inteligenae, pages3055:229{242 Springer
Verlag, June 2004.

[12] V. Amaral, G. Moerkotte, A. Amorim, and S. Helmer. Studiesfor op-
timization of data analysisqueriesfor hepusinghera-bcommissioning
data. In H. Chen, editor, Proceadings of CHEP 2001, International
Conferenee on Computingin High Energy and Nuclear Physics, Bei-
jing, P. R. China, pages154{155.SciencePress,Septenber 2001.

[13] A. Amorim, V. Amaral, and et. al. The hera-bdatabasemanagemen
for detector con guration, calibration, alignmert, slowv cortrol and
data classi cation. In I. P. Mirco Mazzucato, editor, Proceading of
CHEP 2000, international conferenee on Computingin High Energy
and Nuclear Physics, 7-11 February, Padova-ltaly, pages469{472.
Imprimenda, Padova, Italy, February 2000.

[14] A. Amorim, V. Amaral, and et. al. The hera-b databaseservicesfor
detector con guration, calibration, alignmert, slow cortrol and data
classi cation. Elsevier Scien@, Computer Physics Communiations,
140(15):172{178 October 2001.

[15] I. Analog Devices. Adsp-2106xsharc™ . User's Manual, 1997.

[16] I. Androustsopoulos, G. Ritchie, and P. Thanisch. Natural language
interfacesto databases anintroduction. Journal of Natural Language
Engineesring, Mars 1995.

BIBLIOGRAPHY 193

[17] M. Angelaccio,T. Catarci, and G. Sartucci. gbd : A graphical query
languagewith recursion. IEEE Transactionson Software Engineer-
ing, 16:1150{1163,1990.

[18] M. aude,A. Portier, and C. Trepied. A survey of query languagesor
geographicinformation systems. Proc. 3rd International Workshop
on Interfacesto Databases July 1996.

[19] T. Bapty, S. Neema,J. Scott, J. Sztipanovits, and S. Asaad. Model-
integratedtools for the designof dynamically recon gurable systems.
VLSI Design 10(3):281{306,2000.

[20] B. Belieresand C. Trepied. New metaphorsfor a visual query lan-
guage.7th International Workshopon Databaseand Expert Systems
1996.

[21] R. Brun. Zebra- referencemanual - rz random accesgadkage. Pro-
gram Library Q100, CERN.

[22] D. Bryce and R. Hull. Snap: A graphics-basedschema manager.
Proc. IEEE Data Eng. Conf., 1986.

[23] M. Carey, L. Haas, V. Magarty, and J. Williams. Pesto: An inte-
grated query/browserfor object databases.Proc. ACM conf. VLDB,
1996.

[24] T. Catarci. What happenedwhen databaseresearbers met usability.
Information Systems 3(25):177{212,0ctober 2000.

[25] T. Catarci, M. Costabile, S. Levialdi, and C. Batini. Visual query
systemsfor databases:A surwvey Journal of Visual Languagesand
Computing 8:2:215{260,April 1997.

[26] N. Chang and K. Fu. Query-by-pictorial example. IEEE, Tran. on
Software Eng., 6(6):519{524,1980.

[27] E. F. Codd A Data Base SublanguageFounded on the Relational
Calculus. Proceedingsof 1971 ACM SIGFIDET Workshop on Data
Description, Accessand Cortrol, 1972.

[28] Collaboration. CMS(Compact Muon Solenoid). http: // cmsinfo.
cern. ch.

194 BIBLIOGRAPHY

[29] Collaboration. z. http: // wwwzeus. desy. de/ ~odeppe/ ez/ ez.
html .

[30] Collaboration. JAS:. http: // jas. freehep. org/ .

[31] Collaboration. LHC:. http: // public. web.cern. ch/ public/
about/ future/ whatisLHC/ whatisLHC. html .

[32] Collaboration. LHCb:. http: // Ihcb- public. web.cern. ch.
[33] Collaboration. PAW. http: // wwwcern. ch/ paw/, 1988.

[34] Collaboration. Atlas high-lewel trigger data acquisition and cortrols.
Technical DesignReport http: // atlasexperiment. org/ , ATLAS
TDR CERN/LHCC(016), June 2003.

[35] Collaboration. Hera-B, designreport. DESY-PRC 95/01,URL: http:
Il wwwhera- b. desy. de, January 1995.

[36] M. Consensand A. Mendelzon. Hy+: A hygraph-based query
languageand visualization system. SIGMOD,Washington,DC,USA
93(5).

[37] M. Consensand A. Mendelzon. Expressing structural hypertex
queriesin graphlog. Proceedings of the 2nd ACM Hypertext Con-
ferene, pages269{292,1989.

[38] J. Coplien, D. Ho man, and D. Weiss. Commonality and variabil-
ity in software engineering. IEEE Softwarwe, pages37{45, Novem-
ber/Decemnber 1998.

[39] P. Cox and T. Smedley Experienceswith visual programming lan-
guagedor end-usersand speci ¢ domains.In J.-P. Tolvanen,J. Gray,
and M. Rossi, editors, Proc. 1st. OOPSLA Workshop on Domain-
Speci ¢ Visual Languages,Tampa Bay FL, pages87{96. Jyvaskyla
University Printing House,October 2001.

[40] I. Cruz. Doodle: A visual languagefor object-oriented databases.
Proc. ACM SIGMOD Int. Conf. on Managementof Data, pages71{
80, June 1992.

BIBLIOGRAPHY 195

[41] I. Cruz, A. Mendelzon,and P. Wood. G+: Recursive querieswith-
out recursion. Proceedings of the 2nd Int. Conf. on Expert Datalase
Systems pages355{368,1988.

[42] B. Czejdoand R. Elmasri. A graphical data manipulation language
for an extendedertit y-relationship model. IEEE Computer journal,
23:26{36,1990.

[43] E. M. D. Malon. Ciritical databasetechnologiesfor high energy
physics. Proc. of the 23rd VLDB Conferene Athens, Greece, 1997.

[44] R. Davies. A metatool for visual language. Master Thesis October
1997.

[45] Y. Dennelouy, M. Anderson, A. Auddino, Y. Dupont, E. Fontana,
M. Gertile, and S. Spaccapietra.Super: visual interfacesfor object +
relationship data models. Journal of visual languagesand computing,
1(6):27{52, 1995.

[46] J. et al. Farming in hera-b. Proc. of the DAQ 2000 workshopat the
IEEE NPSSconferenee, Lyon, October 2000.

[47] J. et al. Pc farms for triggering and online reconstruction at hera-b.
Proc. of the CHEP 2001 conferenae, Beijing, China, Septeniber 2001.

[48] S. K. et. al. Improving the performanceof high-energyphysicsanal-
ysis through bitmap indices. Proc. 11th International Conferene
on Datalaseand Expert SystemsApplications DEXA 2000, London,
Greenwich,UK, 2000.

[49] L. Fegaras.Ldb database:.http: // lambda. uta. edu/ lambda-DB.
html .

[50] L. Fegaras.Voodoo: A visual object-oriented databaselanguagefor
odmg oqgl. Proc. ECOOP Workshop on Object-Oriented Databases
pages61{72, 1999.

[51] L. Fegarasand D. Maier. Optimizing object queriesusingan e ective
calculus. ACM Transactionson Datalase systems 25(4):457{516,
Decenber 2000.

196 BIBLIOGRAPHY

[52] D. Fogg.Lessondrom 'living in a database'graphical query interface.
Proc. ACM SIGMOD Int. Conf. managemenbf Data, pages100{106,
June 1984.

[53] A. Franzke. Querying graph structures with g2ql. Fachlericht Infor-
matik 10/96, Universitt Koblenz-landay, 1996.

[54] F.Sanchez. Digital signal processorsoftware for the hera-b second
level trigger. Proc. CHEP 98 conferene, CHICAGO, Septenber
1998.

[55] T. Glebe. Clue - the beeevert model library. HERA-B Note 01-138,
Softwae 01-019 2001.

[56] T. Glebe. Pattern - high level tools for data analysis. Internal report
HERA-B Note 02-002, Softwaie 02-002, DESY, 2002.

[57] K. Goldman, P. Kanellakis, S. Goldman,and S. Zdonik. Isis: Interface
for sematnic information system. Proc. ACMSIGMOD Int. Conf.
Managementof Data, pages328{342,May 1985.

[58] M. Gyssens,J. Paredaens,J. Bussde, and D. Gucht. A graph-
orientedd object databasemodel. POODS, pages417{424,1990.

[59] J. W. Hector Garcia-Molina, Je rey Ullman. Datalkase SystemIm-
plementation Prentice Hall, 2000.

[60] S. Herot. Spatial managemen of data. ACM Trans. Database Sys-
tems 5:493{514,Decenber 1980.

[61] H.Perkins and Donald. Introduction to High Energy Physics
Addison-WesleyPublishing Compary, Reading,Massatusetts, 1982.

[62] Y. lonnadis. Advanceduserinterfacesfor databasesystems.SIGMOD
RECORD, 21(1), March 1992.

[63] P. Johnson. Human Computer Interaction. McGraw-Hill, London,
1992.

[64] T. Josephand A. Cardenas.Picquery: A high level querylanguagefor
pictorial databasemanagemen IEEE Trans. Softwae Eng., 14:630{
638, May 1988.

BIBLIOGRAPHY 197

[65] R. King. A databasemanagemenh systembasedon an object model.
Expert Datalase Systems pages443{467,1986.

[66] B. Knuteson. Quaero: Motivation, summary, status. Proc. CHEP
2003, UC San Diego, USA, 2003.

[67] M. Kuntz and R. Melchert. Pasta-3'sgraphicalquerylanguage:direct
manipulation, cooperative queries,full expressie power. Proc. 15th
VLDB Conf., August 1989.

[68] B. M. M. Jaedidke. User-de nedtable operators: Enhancingextensi-
bility for ordbms. 25th VLDB Conferena, Edinburg, Sotland, 1999.

[69] N. Macdonald and M.Stonebraler. Cupid: A userfriendly graphics
guery language.Proc. ACM paci c, pagesl127{131,1975.

[70] D. Maier, J. Stein, A. Otis, and A. Purdy. Developmen of an object
oriented dbms. Report no. CS/E-86-005, Oregon Graduate Center,
1986.

[71] C. Manoj. Towardsan odmg-compliart visual object query language.
Proc. of the 23rd VLDB Conferene Athens, Greece, 1997.

[72] L. Mohan and R. Kashyap. A visual query languagefor graphical
interaction with sthema-irtensive databases.|IEEE Transactionson
Knowledgeand Data Engineering, 5(5), October 1993.

[73] A. Motro, A. D'Atri, and L. Tarantino. The designof kiview: An
object-oriented browser'. Proc. 2nd Int'l. Conf. on Expert Datalase
Sys, April 1988.

[74] N. Murray, N. Paton, and C. Goble. Kaleidoquery: A visual query
languagefor object databases.Int. working Conference in Advaned
Visual interfaces May 1998.

[75] OMG, (Object Managemenh Group, Inc.) Meta Object Facility
(MOF) Speci cation Version 1.4 (April 2002)http: // wwwomg.
org .

[76] A. Papartonakis and P. King. Syntax and semattics of gql, a graph-
ical query language. Journal of Visual Languagesand Computing
6:3{25, 1995.

198 BIBLIOGRAPHY

[77] J. Paredaens,P. Peelman,and L. Tanca. G-whiz, a visual interface
for the functional model with recursion. Proc. 11th Int. Conference
on Very Large Datalases,Stokolm, pages209{218,1985.

[78] J. ParedaensP. Peelman,and L. Tanca.G-log: A graph-basedquery
language. IEEE Transactionson Knowledge and Data Engineering,
3(7):436{453,1995.

[79] A. Portier. Grasp: A graphical system for statistical databases.
In CIGALES: un langage graphique d'interr ogation de Sysemes
d'Information Geagraphiques Ph.d Thesis.University of Paris, 1992.

[80] E. Powabbasand M. Rafenelli. A pictorical query languagefor query-
ing geographicdatabaseausing positional and olap operators. Sigmal
Record, 31(2):22{27,June 2002.

[81] F. Rademalersand R. Brun. Root: An object-oriented data analysis
framework. Proc. AIHENP'96 Workshop, Nucl.Inst. Meth. in Phys.
Res. A 389 (1997),Lausanne. See also http: // root. cern. ch,
pages81{86, Septenber 1996.

[82] P. Reisner. Query languages. In M. Helander, editor, Handhook of
Human-Computer interaction, volume 420, pages257{280. Elsevier
SciencepublishersB. V., North-Holland, 1988.

[83] S. Ross. Introduction to probability and statistics for engineersand
scientists. Wiley seriesin probability and mathematical statistics,
John Wiley and Sons,1987.

[84] B. Shneiderman. Visual userinterfacesfor information exploration.
Proc. of the 54th Annual Meeting of the American Scciety for Infor-
mation Scien@,Medford. NJ. Learned Information Inc., pages379{
384,1991.

[85] T. Shih, Y. Tsai, J. Hung, and D. Jiang. A casetool supports the soft-
ware life cycle of participator dependert multimedia presenations.
ICMS, pages200{203,1998.

[86] D. Shipman. The functional data model and the data language
daplex. ACM Transactions on Datalbase Systems 6(1):140{173,
March 1981.

[87] A. Shoshani,L. Bernardo, H. Nordberg, D. Rotem, and A. Sim. Mul-
tidimensional indexing and query coordination for tertiary storage
managemeh IEEE, 11th International Conferena on Scienti ¢ and
Statistical Database Management, Cleveland, Ohio, page 214, July
28-301999.

[88] F. Staes,L. Tarartino, and A. Tiems. A graphical query language
for object oriented databases.Proc. IEEE Workshopon Visual Lan-
guages,Kob,Japn, pages205{210,1991.

[89] S. Thibault. Domain-speci ¢ languages:Conception,implemertation
and application. Phd. Thesis October 1998.

[90] K. Vadaparty, Y. Aslandogan,and G. Ozsgyoglu. Towards a uni ed
visual databaseaccess ACM SIGMOD, pages357{366,1993.

[91] A. van Deursen, P. Klint, and J. Visser. Domainspecic lan-
guages. Tech. Report SEN-RO0032http: // wwwcwi. nl/ arie,
paulk, jvisser/ , Novenmber 2000.

[92] K. Wittenburg. Early-style parsing for relational grammars. Proc.
IEEE WorkshopVisual Languagespages192{199,1992.

[93] H. Wong and I. Kuo. Guide: A graphical userinterface for database
exploration. Proc. 8th VLDBD Conf., pages22{32, 1982.

[94] M. Zloof. Query by example. IBM SystemsJournal, 4:324{343,De-
cenber 1977.

Glossary

Abstraction - supressionof irrelevant details.

AOD - Physicsanalysisobject data, information usedin nal analysis.
ASG - Abstract Syrtax Graph.

AST - Abstract Syntax Tree.

CERN - EuropeanLaboratory for Particle Physics, Genew, Switzerland.
DESY - In Hamburg / Germary.

Detector data - Data that describesand quali es the detecting appara-
tus, and are usedto interpret the event data (structure, geome-
try, calibration, alignmen, ernvironmental parameters). Statistical
data - resulting data from processinga set of everts (histograms,
n-tuples).

DSP - Digital Signal Processor.
DSVL - Domain Specic Visual Language.
DSVQL - Domain Speci c Visual Query Language.

ESD - Event summary data. Information required for detayled analysis
and high level reconstruction.

Evert data - Data obtained from particle collisions,and their subsequen
re nements (raw data, reconstructeddata, analysisdata, etc...).

GPL - GeneralPurposelLanguage.

GUI - Graphical User Interface.

201

HEP - High Energy Physics.

HERA-B - Experimert in DESY.

IDL - Interface De nition Language.
LEP - Large Electron Positron collider.
LHC - Large Hadron Collider.

Meta-Data - That descrilesother data, like the statistics and evert cat-
alog (example Run).

Model - formal speci cation of a function,structure and/or behaviour of
a system.

Monte Carlo Simulation - Random generation of valuesfor certain vari-
ablesaccordingto a model. Used when there is the requiremert
to automatically analyzethe e ect of varying inputs on outputs
of the modeled system. This simulation technique was named for
Monte Carlo, Monaco, where the primary attractions are casinos
containing gamesof chancesud as roulette wheels,dice, and slot
madines, that exhibit random behavior. This statistics technique
is very often usedfor the generationof simulated physics data. It
follows a complexmodel to simulate all the particles that crossthe
detector, their interactions betweenthem and with the detector, in
order to simulate the data that comesout of the detector (hits).

n-tuple - The at (or table) modelthat consistsof a single,two-dimensional
array of data elemeits, where all menbers of a given column are
assumedo be similar values,and all menbersof arow areassumed
to be related to one another.

NASA - National Aeronautics and SpaceAdministration.
ODL - Object Description Language.

Particle Accelerator - useselectric/magnetic elds to propel chargedpar-
ticles to great energies.Quadrupole magnetsare usedto focusthe
particles into a beamand prevert their mutual electrostatic repul-
sion from causingthem to spreadout.

Particle Collider - the purposeof an acceleratoris to generatehigh energy
particles for interaction with matter. This enails provoking a col-
lision using usually a xed target. The other way is to make these
particles collide with particles acceleratedin oposite directions.

Platform - generalterm to unify technological and engineeringdetails
that are irrelevant to the fundamenal functionality of a software
componert.

QL - Query Language.

RAW - Realraw data. data readdirectly from the detectorand evertually
processedn-line. De ned asbeing WORM data (write onceread
marny),must be securelystored and never modi ed.

RTTI - Run Time Type Idernti cation.

Run - Meta-data information for the Event data that is being collected,
sud as the parametersof the experimert, e.g. the setup of the
detectors, the time span during which data acquisition took place
and generalquality issues.

SIM - Simulated raw data.
SLAC - Stanford Linear Accelerator Certer.

TAG - Even tag data, summariesthe main feature of an Event in order
to be usedfor fast evert selection.

TESLA - The SuperconductingElectron-Positron Linear Collider with an
Integrated X-Ray LaserLaboratory. To be built in the future.

VL - Visual Language.

VME - VERSAmodule Eurocard. Systemsfor mission-critical and real-
time applications.

Index

accelerator,10

analysisframeworks, 17
object-oriented, 23
future trends, 24

historic perspective, 17

hybrid, 21
unstructured, 18

visualization tools, 23

BEE, 169
bunches,7, 11

CERN, 9

Data
acquisition, 10
Analysis, 10
analysissystem, 17
Reconstruction, 10

detector, 9
commissioning,10
data acquisition, 10

designand asserle, 10

domain speci c
engineering,66
in HEP, 68
languages 64
modeling, 63

DSVQL, 74

editors
syrntax assisted,145

204

syrntax directed, 145
syntax free, 144
ewern, 8

Iter triggers, 12

generation
Abstract syntax tree, 153
naive approad, 153
non-defactorizationapproad,
155
Algebraic optimization, 159
code, 158,159
interfacingwith storageengine,
162
Logical query plan, 152,156
Physical operators optimiza-
tion, 159
pipelining, 159
streambasedexecutionengine,
159
generation or semairtic analysis,
147

HEP, 7
experimert life-phases,10
o -line system,10, 14
on-line system, 10, 12

HERA, 11

HERA-B, 9

High Energy Physics, 7

interaction rate, 11 semarnics description, 111

intermediate algebraic operators, BNF like grammar, 91
95 symbolic notation, 81
physics
Monte Carlo, 30 analysissystems,17
Simulation, 30 calibration and alignmert, 15
truth, 30 constarts, 14
data reconstruction, 14
n-tuple, 20 ervironmert data, 15
o -line systems,14 evert data, 16
on-line system, 12 period data, 16
raw data, 14
parsing or syntax analysis,146 physicsanalysis
particle detector, 11 high level, 28
particles collision, 11 low level, 27
PHEASANT query patterns, 32
interface
ASG manager,149 guery language
GUI, 148 semauics, 94
Rule manager,149 de nition, 79
Stemamanager,149 syntax, 80
Text parser,149 concretevs. abstract, 80
Type Cheding, 149 query languages
prototype arti cial, 49
implemertation, 143 graphical, 53
usecases141 hybrid, 57
SRG manager,149 metaphor-based 56
systemactors, 140 natural, 48
domain expert, 140 non-textual, 50
nal user, 140 tabular, 51
physics storagebase, 140 form-based,52
query storagebase,140 skeleton-based52
usecases,140 textual, 48
Pheasam query systems,45
prototype taxonony, 46
architecture, 139
PHEASANT QL ROOT, 205

graph grammar, 89 run, 8

scanningor lexical analysis,146
segmen 9

track, 9

trigger
rst level, 12
fourth level, 14
secondlevel, 13
third level, 14

triggers, 8

usability, 171
e ectiveness 172
e ciency, 172
satisfactionin use, 172

Part VI

App endix

207

App endix A
The BEE framew ork

BEE is alayer(wrapper) ontop of ROOT[81]that intro ducesthe schemaof
the analysisdata of the Hera-B experimert. ROOT, by its turn, is meart
to deal with large amourts of evert data. It's primary goalis to support
the Particle Physicsanalysis,under the assumptionthat physicists doing
analysis, are mostly concernedwith the manipulation of the computed
results in histogramsand n-tuples.

The framework integratesse\eral functionalities:

CINT C/C++ Interpreter ! - It allows the interactive ROOT
command line with the C/C++ scripting language. Large scripts
can be compiled and dynamically linked, making the extension of
the framework very easy

The ROOT Dictionary - Functions, global variablesand classes
arestoredin its memoryresiden dictionary. This dictionary is much
moreextensive than the RTTI 2 facility asproposedin the C++ stan-
dard. The dictionary is generatedby the CINT Dictionary Gener-
ator using the C++ header les without requiring ODL? or IDL
4

Automatic Document Generation - Using the dictionary and
the commerts stated in the source les ROOT can automatically

1py Masaharu Goto of Hewlett Packard Japan
2Run Time Type Identi cation

30bject Description Language

4Interface De nition Language

209

generatea sourcecode documertation both in HTML and PostScript
format.

GUI Classes and Object Browser - Embeddedin the ROOT
systemis an extensiwe set of GUI classes.The GUI classegrovide
a full OO-GUI framework asopposedto a simple wrapper around a
GUI sud asMotif. All GUI classesrefully scriptableand accessible
via the interpreter,(which makesit very easyto do fast prototyping
of widgets layout). A very completelibrary of histogramming with
tting methods was included and is the main point of attraction to
physicists and mathematicians since this scierists are able to get
advancedstatistical analysis(multi dimensionalhistogramming, t-
ting and minimization algorithms) together with visualization tools.
The facility of being able to deal with histogramsand n-tuples as
persistert objects in the ROOT database les format is anotherim-
portant feature.

ROOT object 1/0 System and Class/Sc hema evolution -
The framework was deweloped to include generalpurposelanguage's
functionality sud as distribution and object persistency Despite
the fact that ROOT is not a DBMS, the persistencymedanism is
being tuned to match physics' data storage retrieval and analysis
requiremerts.

Distributed system - Usingthe PROOF (Parallel ROOT Facility)
extension,large databasescan be analyzedin parallel on Massiely
Parallel Processing(MPP) and Symmetric Multipro cessing(SMP)
systemsor loosely coupledworkstation/PC clusters.

ROOT and ODBC - This library is a set of classeghat provides
an interface to ODBC. It is implemerted as ROOT wrappers of
libodbc++. As usual with this padkagesit allows: establishinga
connectionfrom ROOT sessiorto any databasefor which an ODBC
driver is available; sendSQL statemerns and processthe results.

App endix B

Physical operators' algorithms

B.1 Stream Class

Stream

Attributes:
kept tuple
last path
found tuple

Metho ds:

Open

Close

Next tuple
memorizefound tuple
forget found tuple
memorizelast path for unnest
forget last path
memorizekept tuple
forget kept tuple

is stream opened?

is stream closed?

211

B.2 Table-scan/Selection

Table-Scan/Selection
Input: Stream s, Predicate pred
Output: Tuple

get next tuple from streams
whil e(tuple exists)
f

if (predicateis true)

return tuple

get next tuple from streams
g,
return No Tuple

B.3 Table-scan/Selection

Reduce
Input: Streams, Predicate pred, Head head
Output: Tuple

get next tuple from streams
whil e(tuple exists)
f

if (predicateis true)

return head(tuple)

get next tuple from streams
g,
return No Tuple

B.4 Operators for sets

Union
Input: Stream sx, Stream sy
Output: Tuple

if (sxis closed)
return next tuple from sy stream
get next tuple x from stream sx
if (tuple x exists)
return tuple x
closestream sx
return next tuple from sy

In tersection
Input: Stream sx, Stream sy
Output: Tuple

get next tuple x from sx
if (tuple x exists)
open sy
get next tuple y from sy
whil e (evt id of x is di erent from evt id of y)
get next tuple y from sy
closestream sy
if (tuple y exists) return tuple x
return No Tuple

Di erence
Input: Stream sx, Stream sy
Output: Tuple

get next tuple x from sx
if (tuple x exists)

open sy

get next tuple y from sy

whil e (evt id of x is di erent from evt id of y)

get next tuple y from sy

closestream sy

if (tuple y doesnot exist) return tuple x
return No Tuple

B.5 Operator for Unnesting

Unnest
Input: Streams, Predicate pred, Bool outer, Path path
Output: Tuple

get next tuple x from s
whil e (tuple x exists)
f
tuple y= next path of x
s memorizeslast path
whil e (tuple y exists)
tuple z= y appendedto x
if (predicate of z is true)
S memorizesx
s memorizesit was found a tuple
return z
tuple y= next path of x
we have readed the end of inner part
if (outer is true and s doesnot remenber found tuple)
s keepsmemory of x
s forgets memory of x
s forgetsif it wasfound a tuple
s forgetslast path
get next tuple x from s
if (tuple x exists)
if (outer is true and s kept memory of old x)
S memorizestuple x
settuple result= kept appendedby <>
s forgets kept tuple
return result tuple
elseif (outer is true and s kept memory of old x)
reated the end of the outer stream
return the kept old x appendedwith <>

g
return No Tuple

B.6 Operators for Join

Nested _Loop
Input: Streamsx and sy, Predicate pred, Booleanouter
Output: Tuple

get next tuple x from sx
whil e (tuple x exists)
f

get next tuple y from sy

whil e (tupple y exists)

f
if (predicateis true)

sx memorizesx for next tuple
return tuple < x;y >

get next tuple y from sy

g

we have readed end of inner stream

if (outer is true and it doesnot remenber x)
outer was not joined
keepx asleft

sx forgetsx

get next tuple x from sx

if (tuple x exists)

open again sy

elseif (outer is true and exists left)
we have readed the end of outer stream
return < left; null >;

g
return No Tuple

B.7 Operators for Nest

Nest

Input: Streams, Predicate pred, Head Function head,
AggregateFunction agg

Output: Tuple

Assumesthat all the tuples with the sameeuvt id are consecutie
head function inputs tuple and returns < value > or < value;tuple >

get next tuple x from streams
s forgetsany tuple it might remenber
whil e(tuple exists)
f
tuple result_tuple initiates with No Tuple
tuple y=x
get evt.id to keepidfrom x
if (exists evt.id)
whil e (exists tuple y and evt.id of y=k eepid)
result_ tuple=agg(head(y),result tuple)
get next tuple y from s
else get nesttuple y from streams
if (predicate of result_tuple is true)
S memorizesy
return result_tuple
tuple x = y
g
return No Tuple

