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Zusammenfassung

DieseArbeit entwickelt die erste anwendungsspezi�sche visuelle An-
fragesprache f•ur Hochenergiephysik. Nach dem aktuellen Stand der Tech-
nik ist Analysevon experimentellen Ergebnissenin der Hochenergiephysik
ein sehraufwendigerVorgang. Die Verwendungallgemeinerh•ohererPro-
grammiersprachen und komplexer Bibliotheken f•ur die Erstellung und
Wartung derAuswertungssoftware lenkt die Wissenschaftler von denKern-
fragenihres Gebietsab. UnserAnsatz f•uhrt eineneueAbstraktionsebene
in Form einer visuellen Programmiersprache ein, in der die Physiker die
gew•unschten Ergebnissein einerihrem AnwendungsgebietnahenNotation
formulieren k•onnen.

Die Validierung der Hypotheseerfolgte durch die Entwicklung einer
Sprache und einesSoftware-Prototyps. Neben einer formalenSyntax wird
die Sprache durch eine translationale Semantik de�niert. Die Semantik
wird dabei mittels einer •Ubersetzungin einedurch spezielleGruppierung-
soperatoren erweiterte NF2-Algebra spezi�ziert. Die vom Benutzer er-
stellten visuellenAnfragen werdendurch einenCompiler in Code f•ur eine
Zielplattform •ubersetzt. Die Benutzbarkeit der Sprache wurde durch eine
Benutzerstudie validiert, deren qualitativ e und quantitativ e Ergebnisse
vorgestellt werden.



Abstract

We propose the �rst Domain Speci�c Visual Query languagefor High
Energy Physics in order to tackle the problem of the physicist's reduced
productivit y in the High Energy Physics data mining phase. This ap-
proach comesin contrast to the current one where the user is distracted
from Physics by having to code his queriesusing a generalpurposelan-
guageand complexframeworks. Our newlanguageintroducesan abstrac-
tion layer wherethe physicistsdescribe their queriesusinga notation from
their domain of speech. We validated our approach by designingthe lan-
guageand implementing a prototype. The languageis de�ned by a formal
syntax together with a semantics de�ned translationally into a interme-
diate language,an NF2-Algebra extended by us with special grouping
operators. A visual languagecompiler generatesa target sourcecode that
dealswith the particular existing frameworks. The usability of this pro-
posedlanguageis alsoevaluated in this report by performing a study with
real users. We discussin this report quantitativ e and qualitativ e mea-
surements concerningthe user's productivit y, by comparing the former
traditional approach with our new one.
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Chapter 1

In tro duction

For the physicist, the analysisphaseof High Energy Physics(HEP) is the
culmination of years of work on an experiment. In this phase,physics
experimentalists look at the sheervolume of data collected by detector
machinesand try to infer statistical physicsresults.

The software systemsin these areashave been growing in line with
the complexity of the experiments. Unfortunately, for the software of
mining the data stored, the growth took an unstructured way. This is
re
ected negatively in the wholeprocessperformance,meaningboth user's
productivit y (in terms of man hour) and the query systems'e�ciency (in
terms of speed,spaceand cpu usage).

The work described in this thesiswants to interveneby mitigating the
problemson the usersproductivit y. We achieve this by pioneeringa new
approach for doing physics analysisby making useof a Domain Speci�c
Visual Query Language.

1.1 Motiv ation

The study of coherent techniques for the development of proper 
exible
query systemshas been neglectedby the physics community. To some
extent, this situation is explainedby the fact that until now, programming
with GeneralPurposeLanguages(GPL) and somehacking solutionswere
enough to deal with the problem for the very few people that used to
control the wholeprocessof the small experiments. This situation gave the
community the erroneousfeelingthat little investment would be necessary

1



2 CHAPTER 1. INTR ODUCTION

to develop a proper software solution. However, the complexity of the
analysisframeworks has grown considerably, due to the enormoussizeof
the data. The next generationof experiments like ATLAS[34], LHCb[32]
and CMS1 [28] in LHC2 [31] require structured and performant software
systems,which meanse�cien t query algorithms and high productivit y.

This is calling for experts, both from the �elds of physicsand of com-
puter science,to work together on the development of a robust analysis
framework. To continue the approach used until now would result in
strong lack of performance(at all levels: ine�ciency , non-productivit y).
Physicistsare motivated to investigatephysicsand want to decoupletheir
responsibility from the details of the system,but in reality, they are forced
by these systemsto behave like end users and application developers.
Their productivit y decreasesgreatly with time. Yet on the other hand,
since the existing frameworks do not provide clear levels of abstraction,
the computer scientists are forcedto have a proper background in physics
in order to have room for improving the e�ciency of the system by de-
velopingproper optimization techniques. As a consequence,this situation
calls for a newstrategy to introducethe requiredproductivit y, modularit y
and e�ciency in a controlled way.

To �nd a properly structured solution is very important for this branch
of science,since for the coming generationof physics detector machines
with their dimension and complexity, the traditional techniques are not
su�cien t.

This situation is an interesting challengefor computer science,since
a new application area for this scienceis opened. This domain of re-
search has, for instance,requirements which are very di�erent from those
in businessand industry. A full investigationmust bedoneto �nd the core
technology best suited to develop a query framework for this particularly
complexdomain.

1.2 Ob jectiv es

The aim of this work is to to increasethe userproductivit y and introduce
a framework that allows computer experts to investigatee�cien t ways to

1Compact Muon Solenoid
2Large Hadron Collider



1.3. SCIENTIFIC DOMAIN OF THE THESIS 3

optimize the High Energy Physics analysisprocesswithout requiring to
be physicsexperts.

We achieve this by introducing an engineeringmethodology and mak-
ing useof a declarative Domain Speci�c Visual Query Language(DSVQL)
to raise the abstraction level in the existing query systemsand to give
room to new optimizations of di�erent levels. In order to corroborate our
argument, we have implemented a prototype framework, called PHEAS-
ANT, and a visual languagenamedPHEASANT QL. This framework was
developed in the context of the last big experiment, HERA-B in DESY3,
running in Europe before the LHC era. It is an interesting casestudy,
sinceit has real data to study and usersto interact with.

1.3 Scienti�c Domain of the Thesis

In order to investigatethe solution for this domain, we crossedseveral sci-
enti�c domains,basingour solution on their techniques. The most impor-
tant amongthem arePhysicsComputing (PC), Domain Speci�c Modeling
(DSM), DatabaseComputing (DC) with Flexible Query Systems(FQS),
Human Centric Interfaces(HCI) and Visual Query Languages(VQL).

1.4 Thesis Outline

This thesis is divided into four major parts:

� The �rst part dealswith the problem de�nition. Here,we introduce
the reader to the context of High-Energy Physics experiments. It
is followed by a description of the data mining phase,also called
data analysis, and �nishes with the problem speci�cation and the
motivation for our work.

� In the secondpart, weintroducesomeconceptsthat areusefulfor the
argumentation of our proposedhypothesisin the next part. Query
systemstaxonomy and domain speci�c modeling are described.

� The third part approachesthe hypothesis. Using domain modeling,
a languageand a corresponding framework are designed.The core
technologiesare detailed.

3DeutschesElektronen Synchroton in Hamburg, Germany
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� The fourth and last part is dedicatedto the evaluation results and
conclusions.



Part I

Problem De�nition
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Chapter 2

Con text of the Work

In this chapter, we familiarize the reader with the environment of High
Energy Physics (HEP) and the computing activities involved. This way,
we lay the foundations for the problem de�nition presented in the next
chapters, concerningthe physicist data mining phase(commonly known
as analysisin the HEP community).

In Section 2.1 we start by giving a quick overview over the physics
goals.Wecanonly roughly sketch the basicsof HEP, dueto the complexity
of the subject and spaceconstraints. A good introduction to the subject
canbefound in [61]. Then weexplain the commonarchitecture of the HEP
experiments and give a historical perspective of the analysis frameworks
and the analysistools evolution.

2.1 Overview of High Energy Ph ysics

Generallyspeaking,physiciststry to discover newshort-livedparticlesand
their properties or the properties of their interactions, in order to develop
a model of the real world at a subatomiclevel. For this, they usee.g. large
acceleratorsin which particles collide with others, and detector machines
composedof sub-detectorsto measurethe results. The acceleratorsupplies
the particles, which are grouped into bunches, with energy taking them
closeto the speedof light (large kinetic energy),making them collide with
other particles, �xed targets or other beamsof particles.

When massesslam together at hugekinetic energies,their energycon-
verts to new particles and their kinetic energies. The bigger the initial

7
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Proton
Beam

Target

+D
0
SK

+p

+p

 -p

Detector

Figure 2.1: Colliding a beamof particles against a target.

kinetic energy is, the bigger the massesof the products potentially are.
The new massresulting from the very high energycollisionswill appear
asdi�erent, unusual, and interesting particles. Someof them have a short
life, so they decay into other particles beforethey can be detected. Those
particles that live longer,due to their morestablenature, will be detected
by sub-detectorswhich track them in space,identify their type and de-
termine their energy. As an example,we have in Fig.2.1 the collision of
a proton beam with a target. This producesa particle called D + . D +

decays to other particles before reaching the detector. Nevertheless,its
decay products live long enough to cross the detector machine and be
detected.

When the experiments are running, a period of data acquisition, a so-
called run beginsas soon as the systemstabilizes. The time-span during
which two bunches collide is called an event. From now on, we will see
an event as an abstract granular entit y that refers to the data taken by
the detector machine immediately after the collision during this referred
time span. In the main detector machine, large sub-detectors,which are
independent of each other, recordthe resultsof an event. Unfortunately, it
is technically infeasibleto gatherall information of all collisions(due to the
sheervolume of data), so the physicists �lter the data with several levels
of triggers. The resulting data is initially stored on tape. After having
examinedthe data, the acceleratorand the detectorsare recon�gured (if
necessary),and another run can be started.

The reconstruction and investigation of decays and decay chains of
short-lived particles are the main computationally demandingtasksof the
data analysis,which starts after the data acquisition. Roughlyspeaking,in
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this phase,physicistshave to selectthosekind of decays and particles they
are interestedin. For this selection,it is usually necessaryto reconstruct
parts of the particles' tra jectories (also called segments), to match them
with other segments in order to reproduce the full particle tra jectories
(called tracks), to extract further properties, and to deducethe complete
decay chain.

2.2 The Detector

0 m

160 mrad

p

e

magnet

vertex detector

target inner tracker

5 10 15 20

hi-Pt tracker

outer tracker

ring imaging cherencov detector

transition radiation detector

electromagnetic calorimeter

muon detector

Figure 2.2: The HERA-B detector machine

The work described in this thesiswas developed in the context of the
HERA-B experiment, basedin Germany at the DESY1 Laboratory.

HERA-B is the biggestworking experiment in Europe, beforethe next
generationof probing machinescomesaround 2007at CERN2. For Hera-
B, 32 institutes and about 250collaborators from 13countries areworking
together. The machine built, depicted in Fig.2.2, wasmeant to search for
CP violation in decays of B mesonsinto the \gold plated" decay mode
B ! J=	 K 0

S, the details of this conceptsis out of the scope of this thesis
but can be consultedin [35].

1DeutschesElektronen-Synchroton in Hamburg, Germany
2European Laboratory for Particle Physics, Geneva, Switzerland
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Figure 2.3: The life phasesof a typical HEP experiment.

In Fig.2.3 we sketch the �v e typical life-phasesof a HEP experiment
. It starts by the designand detector assemble, followed by its commis-
sioning. As soon as the detector is ready the data acquisition takesplace
making use of the on-line systemstechnology (hardware and software).
Oncethe data is collectedthe o�-line systemswill take the role of looking
at the signal data and construct interesting physics quantities. Finally,
with this quantities the end-user(the physicist) will proceedto analyze
(or mine) this generateddata.

In the next section , we have a look at the detector machine and its
components. Togetherwith this description,we alsoexplain the last three
referred phasesof the hep experiment. We describe the on-line systems
which are usedin the acquisition phase,alsocalled data production. Fol-
lowing that we describe the o�-line systemsand at last the analysis(the
�nal computing intensive phaseof the experiment).

2.2.1 The Mac hinery

Everything starts with the accelerator,which producesa beamof particles.
As the name indicates, the accelerator is the piece of hardware which
provides energyfor the particles, acceleratingthem closeto the speedof
light. Basically, there are two kinds of accelerators: linear accelerators,
where the long tunnels have the shape of a straight line, and circular
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accelerators.
In DESY, this machine is calledHERA. It is a largeundergroundring

tunnel, 10 meters below the surface,with a circumferenceof 3 km. The
tunnel is 5 meters in diameter3.

In HERA, the beamconsistsof a lined up sequenceof several groupsof
particles of the sametype separatedby a given distance,calledbunchesin
the physicsjargon. Thesebunchescomewith a frequencyof 96 � seconds,
i.e. this �gure denotesthe distancebetweenthe bunches.

After the particles are accelerated,the collision takesplace. There are
two approaches to provoke the collisions: either �xed target or colliding
beams. In the �rst approach, particles are made to crash into a solid
block or gasof sometype. The secondapproach is basedon the conceptof
making two bunchesof particleswhich travel into oppositedirectionsmeet
at a certain point in space.In HERA-B, wiresof di�erent materials,called
the target, are approached to the beamwhile the bunchesare passingby,
provoking collisions with the particles on the wires at a very fast rate,
which is called the interaction rate.

After the collision, it is necessaryto detect and measurethe results.
Big detector machines are built around the interaction region, extending
from a point very near the collision to dozensof metersaway. They mea-
sure the particles that survive longer, like electronsor muons, and their
properties (charge, invariant massof the particles that are generated,di-
rection and momentum, etc.). With this information, it is possible to
reconstruct the original particles from which they decayed, proving their
existence,and to measurethe desiredproperties of the interactions be-
tweenthem.

The typical HEP experiment apparatusconsistsof:

� In teraction region/T arget: Where the collision takesplace.

� The detector:

Vertex trac k detector: Measurescoordinates of the hits provoked
by vertex particles very near to the interaction region.

Magnet: De
ects the passingparticles with an angle which is pro-
portional to its momentum.

3The future circular acceleratorunder construction at CERN, called LHC, will have
a perimeter of 28 km. The planned TESLA will be a linear collider with a length of 33
km.
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Ring Imaging �Cerenk ov Detectors (RICH): Identi�es the kind
of particles.

Tracker detector: Measuresseveral coordinate hits along the par-
ticles' tra jectories.

Electronic/Hadronic calorimeter: Measuresthe energy of elec-
trons or hadrons and identi�es (separates)them.

Muon cham ber: Identi�es and measuresmuon particles.

The generalstructure of the machine is described in Fig.2.2.
The main idea of thesedi�erent layers on the detector is to generate

enoughcombined information to explain which particles crossedthe de-
tector and provide this information to the peopledoing analysis,who will
try to reconstruct what happenedduring the collision.

2.2.2 On-line System - the Triggers and Data Acqui-
sition System

Due to the sheervolume of data, it is technically infeasibleto gather all
information of all collisions. Moreover, in many casesthe probability of
producing the interesting reactionsthe physicistsare searching for is very
low, comparedto other kinds of reactions. As an example,HERA-B was
searching for interactions that have certain particles in the �nal state.
With the rate of 10 million of collisions per second, in other terms, a
frequencyof 10 MHz, that kind of event will be producedonly onceevery
1011 interactions (collisions). Therefore,complex�ltering trigger systems
have to be designedin order to separatethe few interesting interactions
from the large background of uninteresting events. In HERA-B, a three-
level trigger systemwas built.

During the processesof data acquisition and reconstruction, the large
data setsof theseexperiments are stored onto robotic tape systems.

The schematics of the data 
o w during the data acquisition are de-
scribed in the Fig.2.4. We dedicatethe rest of this sectionto explain the
components depicted.

The data is pipelined in the data acquisition system(DAQ) and waits
for the di�erent trigger decisions.During this phase,about 1500software
processesare running on several Linux clusters.
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Figure 2.4: The Triggersand the Data Acquisition System

� First Level Trigger (FL T)- As soon as the analogsignal comes
out of the detectorchambers, it is ampli�ed, discriminated (by mak-
ing the di�erence between what is a valid signal and what is just
noise),and digitized in an electronicboard namedFront End Driver
(FED). All this data is pipelinedand waits for a decision.This deci-
sion is taken by the �rst level trigger hardware within a time frame
of 10�s . It consistsin looking at the hits in the several sub-detectors
and identify tra jectory patterns that justify acception or rejection
of the information. This level is dealingwith a data rate of 5 � 1012

bytes/s.

� Second Level Trigger (SLT)- The data resulting from the FLT is
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distributed among1000Sharc[15]Digital SignalProcessors(DSPs)[54].
TheseDSPsare installed in VME crates4 with a very e�cien t data
bus,which transports the data to the third/fourth level trigger. The
SLT is a programmablelayer that allows to run algorithms real time
constrained for selectionsbasedon additional information coming
from the detector. It executespattern recognition algorithms to re-
construct the tra jectories of the particles inside the detector and
can determinethe invariant massof the particles in order to decide.
These algorithms have to take the decisionsin 1 ms, this level is
dealing with a data rate of 25� 109 bytes/s.

� Third/F ourth Level Trigger (TL T)- The information is then
pipelinedto a cluster [46,47] composedof 240microprocessorsnodes.
Thesenodesrun a program for the full reconstructionof the events,
make somelooser selectionof the interesting ones,and, basedon
somecomputed likelihoods, classifythem in the di�erent categories
that may be interesting for the di�erent kinds of physics analysis.
This reconstruction is more time consuming, therefore the trigger
decisionhas to be taken in 10 ms. This level is dealing with a data
rate of 250� 106 byte/s.

Finally, the raw data (signal information) and on-line repro cessed
data (physical quantities extracted by the recognition algorithms which
wererun on the raw data) are storedon tape with a data rate of 2:4� 106

bytes/s.

2.2.3 O�-line System - Data Reconstruction

The real-time systemdescribed previouslyprovidesa �rst level of analysis
and selectionof physicsdata, which has to be processedautomatically.

When the data storage/production is �nished, we can categorizethe
kinds of data[12, 13] produced and/or used in an experiment detector
machine in the following way (seeFig.2.5 ):

� Basic HEP constan ts: for exampleconstants like massesof dif-
ferent particles.

4VERSAmodule Eurocard. Systemsfor mission-critical and real-time applications.
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Figure 2.5: Data producedby the HEP machine beforethe reconstruction

� Environmen tal Data:

Setup - Cabling connectionsand software con�gurations.

Geometry - There is a nominal geometry that describes the
shape of the detectors, their positions, etc. It is obtained mechan-
ically (by automatic reading of the measuringinstruments) during
the data acquisition and afterwards with the calibration and align-
ment data.

Calibration and Alignmen t - The geometryof the detectors
is obtainedmechanically, by readingthe measuringinstruments dur-
ing the acquisition. However, the accuracyof the detector position
is obtained only in the order of millimeters, which is lessprecision
than neededlater. Therefore, it is necessaryto apply alignment al-
gorithms in order to determine with a precision of � meters where
the detectorand its sub-detectorsarelocated,comparedto the beam
position (and, in the caseof the sub-detectors,betweeneach other).
The alignment algorithms make use of calibration and alignment
data. This data is stored during the data acquisition and corrected



16 CHAPTER 2. CONTEXT OF THE WORK

afterwards by the sub-detectorexperts.

Perio d (or Slow Con trol): Status, Luminosit y - Condi-
tions like atmosphericpressureand temperature can in
uence the
precisionof the machine. This information, which doesnot change
very fast, is stored in a databasesystem[6, 14].

� Event Data (ra w):

Event, sub-detector FED bit pattern - Signal data is char-
acterizedby being written onceand never modi�ed.

(a) Ra w data (b) Ph ysics quan tities (c) Detector in teraction (d) Deca y (e) Basic ph ysics

Figure 2.6: Informal descriptionof the resultsof the major transformation
phases.

Data cannot be used directly as it comesfrom the detector (it con-
sists only of electronic signals). Therefore, it needsto be transformed
into somequantities the physicist is able to handle and to understand.
As a consequence,the raw data is transformed in several phases.These
transformation phasesare shown in Fig.2.6 from a) to e). Brie
y , we can
describe the processat the conceptuallevel as follows.

The raw data in (a), composedby read-out addressesof the detec-
tor, bit patterns, etc., is �rst converted to the description of the hits (i.e.
points of interaction of the particles) in each layer of the detector (b).
To passfrom (a) to (b), several problemslike noise,detector ine�ciency ,
ambiguity, resolution, alignment, and variations in temperature must be
solved by calibration, noise reduction, and alignment algorithms. As a
result, information about the interaction of the particles with the detector
material is obtained. This is the starting point for the next phase,which
is the pattern recognition of physical segments, clusters, and rings. This
way, particles crossingthe detector are identi�ed (c). This last computed
information is used by the scientists for the decay studies(d). The re-
sults will provide physical statistics and probability �gures to support the
theoretical model of particle interaction under investigation (e).
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2.2.4 Analysis System

One of the main tasks of the data analysis software in experiments on
high energyphysics is the reconstruction and investigation of decays and
decay chains of short living particles. A lot of information from di�erent
reconstruction algorithms (e.g. reconstructed primary vertices, particle
identi�cation, momentum determination etc.) must be combined in order
to identify tra jectory combinations which have a commonorigin and be-
long to the decay of another particle. The reconstructeddecayed particle
can be itself a decay product in a complex decay chain and used as an
input for further decay reconstruction.

Roughly speaking,the analysissystemsarecomposedof a visualization
tool, a set of scienti�c calculation libraries, and a storage manager (a
detaileddescriptionwith the history of its evolution is contained in Section
2.3). Traditionally, in a �rst stepof his analysis,the userselectsa subsetof
data from the storagemanager. Then, several reconstruction algorithms
with scienti�c calculations�lter out data and computenewvaluesthat are
stored in private collections. Finally, the new data collection is visualized
in the visualization tools (for instanceby histograms). In Chapter 4, we
will explain the analysisphasein more detail.

2.3 Historic Perspectiv e of the Analysis Sys-
tems

In this section,we are going to describe the structure of the analysissys-
tems, i.e. the storageand visualization tools, and their historic evolution.
With this description, we already start approaching the nature of the
problem in the analysis phase. In fact, understanding the evolution of
the architectures will help us to understandboth how the legacysystems
dictated the systemarchitecture of the present experiments and what the
main reasonsfor the growing dissatisfactionof their end usersare.

We will describe the evolution from the early stages,dominated by an
unstructured approach, till the time theseframeworks adoptedthe object-
oriented design. We will end with a description of the current trends and
future tendencies.

Sincewe will usethe conceptsof the levelsof abstraction in a DBMS,
we will shortly de�ne what we understandby the three levels: conceptual
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(or external), logical, and physical. In summary, the conceptual model
is concernedwith the real world view and understanding of data; the
logical model is a generalizedformal structure according to the rules of
information science;the physical model speci�es how this will be executed
in a particular DBMS instance.

2.3.1 Unstructured Approac h

Second Level
    Storage

Third Level
   Storage

I/O

Application

codes and gets results

User/Developer

copies files to 
 second level 
    storage

Figure 2.7: User builds his own query systemfrom scratch

In the early and small experiments, data was usually organized in
compressed,self-describingdata formats stored in 
at �les. The user
wasresponsiblefor fully coding the completequery, including loading the
data from �les into main memory, query computation and result analysis
code (seeFig.2.7). A deepknowledgeof programming, especially in the
FORTRAN language,was necessary. The data schema and the storage
formats were unstructured and changedvery often, which madethe code
di�cult to reuseand maintenancea nightmare.
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In the early experiments, this approach was easyto handle. However,
whenboth the data volumeand the schemagrew, the community soon re-
alized that a lot of main memorywasneeded.The code for executingI/O
tasks had to be redonecontinuously. The user also had to worry about
things like how to minimize the number of accessesto the tertiary stor-
age,which waspossibleonly by knowing beforehandwhich �les contained
relevant events and wherethey were physically located in the system. In
addition to all that, the userdid not always implement the most e�cien t
code. In consequence,to build up a library that brings the relevant parts
into main memory for processingbecamethe next designconcern.

Second Level
    Storage

Third Level
   Storage

I/O

Copies Files to 
 Second level 
    Storage

Codes Selection

Physics Selection
    Application

User/Developer

Scientific & Statistics
 Calculation Package

Codes Visualization
(histogramms) Statistics and

Visualization

Visualizing

    Package

Stores Private selection

N�Tuple

I/O

Figure 2.8: User codeswith di�erent setsof available libraries

Specializedpackages(seeFig.2.8) weredeveloped to provide a setof in-
dependent libraries providing specializedI/O together with algorithms for
physical analysisand mathematical calculation, and functions for statis-
tics, histogramming and visualization. The user still had to deal with
the growing complexity of the data's physical layout, but had accessto a
widely dispersedset of packagesto re-use(\glue") insteadof doing every-
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thing by himself.
A standard storageformat for event data called ZEBRA[21] was de-

�ned for the data stored in �les in HEP. It was quickly adopted in most
of the HEP experiments, sinceit simpli�ed the code for looping inside the
�les. The event is seenasthe granularit y of the data, the contents of them
asblack boxes,which had to be interpreted by the usercode.

Typically, the usecasewould start by a pre-selectionof �les that might
contain interesting events. The user had to program many lines of code
usingimperative languageslikeFORTRAN to specify the application code
representing the query. The query program would loop over the event
data stored in each �le, compute new valuesand determine if they were
interesting enoughto store in a speci�c 
at �le on a local workstation. In
the physicists jargon, the result wasan n-tuple table. This table wasthen
usedfor the �nal statistical calculations.

At this point, theseanalysisframeworks madeno distinction between
the physical and the logical levels and, obviously, the conceptualmodel
was not completely covered. The user had to know the speci�c layout
and particular storagelocation of the data. In order to extract the data
from di�erent complex sourcesand to deal with the complexity of the
data, including the transfer to main memory, it was necessaryto write
code. These frameworks becametoo complex to use, and the practical
reusability of the producedcode was limited.

The volume of the data (that had risen to magnitudesof terabytes)
and its storage,together with the needfor expensive computer resources,
forced that hundreds (sometimesthousands) of usersat di�erent levels
(physicists doing analysis, component experts extracting and generating
physics analysis data, system administrators) had to accessthe data in
central data repositories. At the sametime, all of them were expecting a
highly e�cien t system.

Visualization Tools

By then, tools like PAW[33] had appeared,which provided the end user
with subroutinesthat would integrate the I/O packagefor accessingthe
referredn-tuple, and with data visualization packages(mostly histogram-
ming). While this was very convenient for generating histograms and
statistical calculus, it was extremely di�cult to usecomplex data struc-
tures that required referencesamong data objects (this problem will be
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moreclear in the next chapter whenwe describe the conceptualmodel and
the logical schema). Besides,a method to identify all data items wasnec-
essary. Queriesat this level wereobviously limited and totally dependent
on the structure of the tuples de�ned by the user.

2.3.2 Analysis Framew orks
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Figure 2.9: Multi-users'/programmers' query over a framework

A secondgenerationof approachesto this problem, (seeFig.2.9), still
usedby many experiments world-wide, started to implement hybrid object-
oriented frameworks, like ARTE[4], where the other paradigmswere in-
herited. The idea was to cope with the growing user demand for query
applications which usean object-oriented design.

Theseframeworks were meant to centralize all the packagesfor sup-
porting the tasks emergingduring the life phasesof the experiment, in-
cluding data production, simulation, transformation (in physics jargon
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re-processing)of the raw data into physicsdata, and �nally the analysis
phase. Cluster solutions were chosenin order to increasecomputational
power with cheapcommercialhardware.

Although not worrying about the speci�c requirements for the analysis
phase,the great achievement of thesesystemswas to provide transparent
accessto every �le with persistent event data. It did not matter whether
it residedin secondaryor tertiary storage. It gave rise to several projects
whosemissionwas to optimize the I/O performance.

This secondgenerationapproach provided the enduserwith the "main
event loop abstraction", where the program loops over the event data
elements stored in the �le and handsthem over to the physicsalgorithms
that are responsible of knowing the proper schema and extracting the
required information into main memory. Typically, the userhad to know
in which �le he would �nd the event data elements he was interested in
beforerunning the physicsalgorithms on them.

Theseframeworkswerealsodevelopedwith the goalof distributing the
queriesand data on computer clustersin a multi-user environment. Some
of them have primitiv e load-balancingcapabilities. They did not exploit
parallelism.

Although they still do not hide the complexity of the data struc-
ture of the events from the end user, theseframeworks introduced more
modularit y and integrated the dispersed packages. Nevertheless, they
werestrongly boundto a particular physicsexperiment's implementations,
which meant that the userhad to re-learn them in every new experiment,
and was dependent on legacy code. This way, algorithms were coded
in several generalpurposelanguagesand paradigms,with steeplearning
curves and with a high risk of being ine�cien t when badly written by
inexperiencedusers.

Thesesystemsalsodo not present di�erent viewsfor the di�erent users
involved as they do not hide the unnecessarilycomplex data structures
from the end users. As a result, usershad to map domain conceptsinto
design conceptsand then to implementation concepts,without any ab-
straction involved. Partially, this confusionwas already generatedby the
physicist's dual role of developer and end user.
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2.3.3 Ob ject-orien ted Framew orks

Attracted by the advantagesof a DBMS - for example,concurrencycon-
trol, indexing support and query capabilities - somerecent HEP experi-
ments, like BaBar5 and AMS6, implemented solutionsbasedon a commer-
cial OODBMS. Unfortunately, this approach hasshown to be problematic
- in part due to someinexperienceof the community in OO design,and
greatly due to the non-scalability of the available OODBMS commercial
solutions.

The introduction of the OODBMS technology allowed a clear sepa-
ration between the physical and the logical levels and allowed someop-
timization approaches like the introduction of vertical partitioning[87] of
event data or bitmap indexes[48].

Visualization Tools

JAS[30](Java), ROOT[81](C++) and other visualization toolsbecamethe
object-oriented evolution of PAW. Sincethe relative failure of OODBMS
usagefor HEP purposes,the tendency now is to change this situation
by developing a more adequatestorage layer underneath the visualiza-
tion tool. This way, both visualization and storageare combined in the
sametool, and the user programs the complete query in the samepro-
gramming paradigm. In order to make an HEP object persistent, special
machine independent I/O mechanismsare being developed (an example
is the packageROOT I/O[81]).

As such tools were originally designedto deal with a local storageof
the selectedn-tuple data in the physicist's computer, the missionof turn-
ing the tool into a distributed very large databasewithin a distributed
heterogeneousmulti-user environment is necessarilyvery di�cult to ac-
complish.

Although thesetools are meant to support the user during the query
programmingphase,they havea confusinglogicalschemathat is unrelated
to the conceptualone. The physicist hasto twist the way heconceptualizes
the data into the unnatural object model thesetools support. They still
imply object-oriented programming activities using a growing number of
complex library of functions which are di�cult to learn by the end user.

5SLAC, USA
6NASA, USA
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2.3.4 Curren t and Future Trends

In 1997, in a vision paper at the VLDB conference,the community pre-
sented the requirements for their domain [43] with the ideaof pushingthe
limits of technology. Somegoalsfor the next generationof systemswere
set:

� Deal with petabytes of data.

� Support hundredsof simultaneousqueries.

� Return partial resultsof queriesin progress(with time estimatesfor
their completion) and provide interactive query re�nements.

� Deal with data on secondaryand tertiary storageaccessfor simul-
taneousqueries.

� Provide an environment for data analysisthat is identical on desktop
workstations and centralized data repositories.

� Support statistical selectionmechanisms(uniform randomsampling).

� Provide a 
exible schemawhich supports versioning.

In part motivated by these requirements, some future experiments,
especially in CERN (Atlas/CMS/LHC-B,etc.), are embracing the devel-
opment of a new system called GRID. The leading role of the CERN
institution worldwide normally has a strong in
uence on the technology
chosenfor the other physicsexperiments in the future.

The main mission of GRID computing is to coordinate distributed
heterogeneoushardware and storage resourcesamong a dynamic set of
individuals and organizationsin order to achieve a commongoal. It in-
volves the studies of peer-to-peer solutions applied to this domain's re-
quirements with development and implementation in di�erent areassuch
as data replication, migration, security, processing,load balancing and
networking philosophies.Still at its starting phase,it aims to be the next
big revolution on networking for scienti�c computation in 2007,when the
next big experiments at CERN (ATLAS, CMS) start to run.

In spite of the very complex,but promising technology, to our knowl-
edgeno seriousstudiesexist about the conceptualmodel for the analysis,
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logical schemasand analysis query patterns. We predict that this will
becomea seriousgap in the future when it starts to be necessaryto tackle
the problem of user'sproductivit y. The other problem directly related to
the lack of abstraction layers will be when the experts try to tune the
computational performanceof the query systems.

2.4 Summary

In this chapter, wehave introducedthe physicist'sHEP analysisphaseand
described the structure of the typical HEP systems. We have also given
an overview of the physicsactivities involved, trying to avoid unnecessary
complexdescriptionsthat are beyond the scope of the thesis.

From this chapter, we would like to highlight somekey ideasthat will
be handy for the discussionin the following chapters:

� Only part of the total experiment's stored data is actually usedfor
physicsanalysis.

� In order to mine the data, the end useradopts a dual role of appli-
cation programmerand user.

� The developed tools do not allow for data independence.

� The complexity of the data structures and the representation of the
data is not hidden from the user.

In the next chapter, we are going to describe in detail the physics
analysisprocessand the problem we proposeto solve.
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Chapter 3

The Ph ysics Analysis Pro cess

This chapter is dedicatedto describe the physicsanalysisprocessin more
detail. The documentation in this areaunder the perspective of computer
scienceis typically very poor, inconclusive and sometimescontradictory.
Therefore,we expect to bring somelight into this subject with our own in-
terpretation resulting from the experiencewe have with real usersrunning
analysissystemsin a running experiment (HERA-B).

We start by explaining the di�erence betweenlow-level and high-level
analysis. Then, we proceedwith an overview of the schema. We �nalize
by explaining what major stepsare involved while querying the physics
data, and which query patterns we might expect.

3.1 De�ning Ph ysics Analysis- Low versus
High Lev el

There is still somecontroversy about the conceptsof low-level analysisin
the physicscommunity. Therefore,we are goingto de�ne our understand-
ing of them in the rest of this section.

Traditionally, analysisusedto involve writing code in a GeneralPur-
poseLanguage(GPL), like C++, Fortran, etc. This code wasresponsible
for performing the whole data transformation chain in the sameuser ap-
plication program, which includesthe reconstructionof physicsdata from
the raw data and the analysis. This implied the useof speci�c data from
the detector machinery such as information on geometry, calibration and
alignment, to reprocessthe raw data in order to producethe physicsdata
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and to run the query algorithms. This kind of analysis,now called low-
level analysis,is a legacyfrom old experiments. It resultedto someextent
from the need that the usershad to start with their analysis while the
detectors were still at the phaseof con�rming that the system function
matches the operational needs,also called commissioningphase1. The
main reasonfor this situation is that, as in any complex research experi-
ment, when using cutting edgetechnology, the behavior of the machines
is not always completely understood.

Low-level analysiswas only possiblethanks to the relatively small de-
tectors. They were characterized by having both small data sets and
relatively simpledata structures. The sub-detectors'description data was
very reduced.

At present, due to the very large data set and the complex queries
required for the new generationof experiments, this analysisis no longer
possible. Re-processingthe whole data set takesseveral months. In con-
sequence,the control of such data re-processingactivities shouldno longer
be on the users'side,but shift to someother actors like the experiment's
management. Then the low-level analysis is left to the machine experts
that will only perform machine tests over small data sets. On the other
hand, high-level analysis,which queriessimply physics data and ignores
the details of the machinery involved, is the new way of analysis.

High-level analysis involves generating queriesonly on physics data,
with a speci�c data model in order to return the interesting statistical
results.

3.2 Mon te Carlo Simulation

As weexplain in the next section,while describingthe analysisdata model,
it is very commonin Physicsto usethe socalled Monte Carlo simulation
technique (for more details consult any statistics book, for instance[83]).
It consists in the random generation of values for certain variables ac-
cording to a model. It is generally used when there is the requirement
to automatically analyze the e�ect of varying inputs on outputs of the
modeledsystem. This simulation technique was namedfor Monte Carlo,
Monaco, where the primary attractions are casinoscontaining gamesof

1The four main phasesof the experiment are: design,construction, commissioning
and operation (or data production).
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chancesuch as roulette wheels,dice, and slot machines, that exhibit ran-
dom behavior.

This statistics technique is very often usedfor the generationof sim-
ulated physics data. It follows a complex model to simulate all the par-
ticles that crossthe detector, their interactions between them and with
the detector, in order to simulate the data that comesout of the detector
("hits").

3.3 Analysis Schema
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Figure 3.1: Detailed UML model of the analysisof the relevant event data

Basedon our casestudy, the Hera-B experiment, and physicists' de-
scriptions of other experiments taking place worldwide, we derived the
conceptual model of the analysis data in a UML diagram that is de-
picted in Fig.3.1. It consistsof the following entities: the generalized
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Collection , from which other Runor evenothersareinherited; RecEvent
that aggregatesRecParticle , RecVertex (that canbeof two types: pri-
mary or secondary),and the simulation events MCEvent that inherit from
RecEvent and store extra information MCParticle , MCVertex .

The attributes of the entit y Run, a typical specialization of the entit y
Event Collection , de�ne meta-data information for the Event data that
is beingcollected,such asthe parametersof the experiment, e.g. the setup
of the detectors,the time spanof the data acquisition and generalquality
issues.

Event attributes describe properties of the set of particles involved in
an event. This entit y can have up to � 10 di�erent attributes of mostly
Booleanand up to 80 enumerated typeswith a list of enumerated values
comprising up to 80 values. Theseattributes are mainly referring to the
usageof certain algorithms for the re-processingof the particular event.
Some, but few, double precision attributes might be used. Finally, an
attribute of type integer might be usedto specify the versionof the same
raw event that was reprocessed.

Events can be simulated or real. A simulation meansthat the produc-
tion of random collisionsis simulated, by using the Monte Carlo method,
and that the particles and vertexesare reconstructedusing the samesoft-
ware algorithms as if they had really crossedthe detector. These par-
ticles and vertexesare generatedwith exactly the sameattributes as in
a real reconstruction. The di�erence of this simulated data to the real
one, concernsonly the so-calledMonte Carlo truth, (in Fig.3.1 MCTruth
Particle and MCTruth Vertex ), which are a one-to-oneassociation of
the exact information about the simulated particles and vertexes. This
MC Truth gives the information about the particles and vertexes as if
they werecrossingthe detector beforethe reconstructionalgorithms track
and identify them. Mostly, given the complexity of the pattern recogni-
tion algorithms, the path of the particles identi�ed is the nearestpossible
approximation to reality. This kind of information is usedextensively for
the determination of error rates and e�ciency �gures. Attributes for this
entit y can be Booleanvalues,for instance,or a list of enumerated values
in an attribute tag.

Fig.3.2 consistsof various entities for the description of particles, ver-
texesand their corresponding simulation. Almost all of theseattributes
are double precisionnumbers.

A particle is, in general,described by its momentum, its massand the
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Figure 3.2: UML details of the reconstructedVertex and Particle.

coordinates of the �rst measuredpoint of its tra jectory. In the caseof
a decaying particle, the point could be the decaying vertex. In the case
of neutral particles they can be described by the energydeposited in the
calorimeterdetector and the position of this energydeposition, sincethey
do not have a measuredtra jectory.

In Fig.3.3, we present an informal object graph of the described data
model. It represents the physics analysis' databaseat the instance level
as it was de�ned in Hera-B. Along with it, we show some�gures to give
an idea of the proportions and number of objects taken for the analysis
phase.These�gures concerndata taken over a period of 6 months.

3.4 The Query Patterns

The physics data for the analysis can be described as WORM (Write
Once and Read Many). Typically, the analysis queriesare issuedonly
once. This meansthat every newphysicsquery requiresa newapplication
code. Nevertheless,almost all have onesequencein common(seeFig.3.4),
where the �rst three major steps are selecting the available data (�rst
�ltering out pre-de�ned collections,like Runs, and then retrieving setsof
the contained Events), reconstructionof the decay for each event, and the
last one is visualization of statistics data (usually using histograms).
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~692

Run Private

Event

~100 per Event

SecondaryVertex

0..5 per Event0..10 per Event

PrimaryVertex Particle
Particle PrimaryVertex SecondaryVertex

1..5 per Event

~31.176.798 Real Events ~10.000.000 Simulated Events

~100 per Event ~10 per Event

Figure 3.3: Object graph representing the physics' analysisdatabaseat
the instancelevel

In this section,we are going to describe the di�erent patterns and give
the pseudo-code of a real life example.

3.4.1 Query Steps

In order to sieve out interesting subsetsof events, the analysisstarts by
selectingthe Collections . This involvespartial match queriesover some
Collection attributes. Usually, this makesuseof up to 5 dimensions.

The secondphase implies range queries over a small subset of the
Event properties. While the events can have as much as � 10 di�erent
attributes, i.e. � 10 dimensions,the number of properties restricted by
mostly rangeand partial match queriesis usually much smaller, typically
1 to 4.

With the �ltered event data collected in the �rst and secondstep,
the physicists now try to reconstruct decay chains as a third step. At
this level, retrieval techniques must deal with many di�cult problems:
enormousquantities of data, high data dimensionality, low-dimensional
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� 1 - Run/tag selection:

{ Trigger selection

{ Run perio d

� 2 -event Selection:

{ Filled bunc h

{ No coasting beam

{ No empt y events

{ Re�ned con�rmation of the trigger

{ ...

� 3 - Reconstruction:

{ Track selection

{ Particle ID �lter condition

{ Com bination of trac ks

{ Vertexing

{ Kinematic or geometric �lter conditions

{ ...

� 4 - Histogramming and/or comparisonwith Monte Carlo Simulation

Figure 3.4: Query stepsfor generalanalysis

region queries,and highly skewed data distributions. However, they are
not interestedin all decays that took placein an event, but want to sort out
data that is irrelevant to their current investigations. This also involves
computing and caching of intermediate results.

The third step starts by selectingthe di�erent particles, \leaves", of
the decay tree. This involvesselectionpredicateswith rangequeriesover
typically up to 8 dimensions.Sometimes,with the simulated data, the user
might be interestedin the Monte Carlo truth. This will imply navigational
queries,which in the object oriented databasescorresponds to the useof
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path expressionswith implicit joins to single-valuedattributes (where the
particle or vertex objects refer to the corresponding MC Truth Particle
andMC Truth Vertex). This phaseis followedby explicit join querieswith
few range predicates, together with more or lesscomplex mathematical
functions to derive properties (which createsnew intermediate results).
The next operation might imply nearest-neighbor queries of the newly
computedresults with someother stored data (like vertices).

The fourth and last step consistsof the visualization of the results
(in form of histograms,tree-like structures, n-tuples, etc.). Group-by and
aggregatequeriescan be usedat this level.

Querying does not necessarilystop here: users can go back to the
previousstepsand reformulate their query.

3.4.2 Example Query

In order to give a more concreteidea of the typical user'squery code, we
are going to present a query of medium complexity (seeFigure 3.5) in
pseudocode. In this example,we are going to abstract the physicsdetails
and only present the algorithm that performsthe data manipulation.

The conditionsthat arepresented in the algorithm aremostly conjunc-
tiveexpressions.Thesemight makeuseof useror systemde�ned functions
(like geometricaldistancesetc.).

The query starts with selectinga collectionof runs. From these,a sec-
ond step will retrieve a sub-selectionof events accordingto new predicate
conditions.

With this �ltered selection, the user starts with the selectionof the
constructed decay he is interested in. Usually, the algorithm starts by
selectingthe particles and combining them to form the vertexing. This
vertexing canhave2,3or moreparticlescombined, or evenseveral vertexes
can be generated,depending on the type of physicsthe user is interested
in. A system or user de�ned vertexing function computesthe valuesof
the decaying particle. Sometimes,we make use of an operation like de-
termining which vertex stored in the event list of vertexeshas a minimal
distancefrom another one. Finally, someof the values,newly computed
or not, are stored to be visualized.

As a last step, the visualization tool is fed with the resultsand displays
the information, typically making useof histograms.
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1) Declare: List Runs , List Events, List Results
2) Result is a list of particle1, particle2, Computed Vertex and Vertex

# Step number 1
3) while(run=nextRun()) f
4) if(conditions) Runs.append(run)
5) g

# Step number 2
6) foreach run in Runs f
7) while(event=run.nextEv ent()) f
8) if(conditions) Events.append(event)
9) g

# Step number 3
10) Declare: List Particles and List Vertexes
11) foreach event in Events f
12) Particles= event.GetParticle(conditions)
13) Vertexes= event.GetVertex(conditions)
14) particles=Particles
15) While (particles.notempty()) f
16) headParticle=particles.head()
17) particles=particles.tail()
18) foreach auxParticle in particles f
19) if (condition(auxParticle) and condition(head, auxParticle)) f
20) Declare: distance=1 and MinVertex= fg
21) computedVertex=ComputeVertex(headParticle,auxParticle)
22) foreach vertex in Vertexesf
23) if(distant(v ertex,ComputedVertex)< distance) f
24) distance=distant(v ertex,Vertex)
25) MinVertex=V ertex
26) g
27) g
28) if(MinV ertex.notNULL)
29) Result.append(headParticle,
30) auxParticle, computedVertex, MinVertex)
31) g
32) g
33) g

# Step number 4
34) Histogram(userSetup,Results)

Figure 3.5: Exampleof a user'squery, (pseudocodebasedon a real query).
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3.5 Summary

In this section, we have described the analysisphaseby introducing the
physicsdata model and describingthe query patterns.

Sincethe queriesdepend mainly on the kind of physicsthe researcher
is looking for, they were usually consideredunpredictable and complex.
However, as we have shown, they tend to show a common pattern. We
are going to usethis characteristic pattern as part of the solution of the
problem de�ned in the following chapter.



Chapter 4

Problem statemen t

"The three most important factors that determine the successor failure
of a databasesystemare performance,performance,performance!"..."at
leastoneof thesethree referencesto performanceimplies that of end-users
when interacting with the systemto accessdata, i.e., user productivit y."
(for researchers) "t wisting their way of thinking so that it �ts that of the
available systemsis simply somethingthey are not willing to spend time."
Yannis E. Ioannidis.[62]

In the previouschapters,we have described the context of HEP exper-
iments and explainedin detail the areaof physicsdata analysiswherewe
want to make our intervention.

In this chapter we conciselyexplain the problem betweenthe end-user,
the physicist, and the present HEP querysystems,and thereforeintroduce
our resulting motivation for this thesis.

4.1 The Problem

As we have explained in the last chapter, the analysisqueries,which are
complex and apparently issuedonly once, show somecommon patterns
in reality. This situation justi�es the usageof 
exible query systemsthat
explorethesepatterns to query the physicsdata storedin order to improve
userproductivit y.

As alreadymentioned in the context description, the development pro-
cessof the analysis frameworks was very unstructured. Forced by the
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circumstances,the usersbecamedevelopers, partially becauseof legacy
systemsand partially becauseno software engineeringsolution existed
that tackled the problem from its roots in a structured way. In fact, the
result was the development of frameworks that do not provide data inde-
pendence,showing complex data structures and schemaswithout hiding
the physical layer details. Typically, theseframeworks make useof several
GPLs and a multiplicit y of complex entry points. In other words, they
have complex interfaces.

The current systemsare disadvantageousfor the three typesof system
actors involved: normal users,systemexpert usersand systemdevelopers.

Normal users,or non-experts, areusuallyphysicistswilling to dophysics
analysiswithout any background on the analysissystemsimplemented by
the experiment's experts. Generally, they are dissatis�ed since they are
usually not very good at programming. They do not have the neces-
sary background for performanceoptimization at any level. Hence,they
spend too much time with learning, coding, producing both semantic (al-
gorithms) and syntactic errorsand waiting for the results. Thus, they are
distracted from physics.

Expertsarecharacterizedby having a deepknowledgeof the experiment-
speci�c schema. They are experiencedin the framework internals and
(usually) master the programming languageand paradigm. They expect
from the system
exibilit y and expressiveness.Generally, they cope with
the current situation, but with the growing complexity of the systems,
coding for analysisis getting more and more time consuming.

Generally, for developers or system maintainers the work is complex
becausethere are no abstraction levels. This meansthat any produced
changesa�ect the whole chain, and implies that the userstend to reject
changes.Like in other engineeringprojects where it is di�cult to design
modular software, e�ciency and performanceproblems are not easy to
solve. For thesesystemactors, which are no experts in physics, it is very
di�cult to change the situation since the documentation about the do-
main is very poor and sometimescontradictory. Use casesare not clear
without a profound understandingof the physics involved, with the neg-
ative consequencethat only few seriousstudieson query patterns can be
found (see[56]).

The consequenceof the described situation is a lack of e�ciency in the
analysisprocess. As we are going to describe in the next section, there
are important tasks that are time consumingand which depend directly
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on the user'sskills.
As a summary, wecansay that scientists analyzingHEP data areoften

distracted from their real work becausethey have to learn many details
on computer sciencethat are completely unrelated to physics. Thus, the
analysis of data generatedby detectors in High Energy Physics (HEP)
experiments can be a tedious, ine�cien t and cumbersomechore. This
problem is very well known and mentioned by the experts in the �eld, so
we want to tackle it in this thesis.

4.2 Time Consuming Querying Pro cess

Figure 4.1: Sequencesof query steps

If we try to track productivit y bottlenecks and, consequently, propose
changesto improve the situation, we should look at the whole analysis
processand understandwhich parts are more time consuming. This way
the weaknessescan be more easily pinpointed.

We usethe term end-userfor both normal and expert users,which are
referred to in the last section.



40 CHAPTER 4. PROBLEM STATEMENT

Giving an overview of the analysissteps,we can roughly depict a se-
quenceprocesslike in Fig.4.1. We can observe that the time spent on
this activit y changeswidely becausethere are so many di�erent stepsin-
volved. The total time spent on analysisdependson the complexity of the
query, the experienceof the end user in programming, the programming
environment and the executionof the analysisframeworks.

From the end user'sperspective the total time spent consistsof:

� time spent learning the programming language- rangeswidely, de-
pending on the user, but our experienceshows that this tends to
take between1 to 3 months;

� time spent with the analysisframework - usually, a month is neces-
sary;

� time spent programming the complete query - rangesfrom taking
three days to two weeks;

� time for debugging syntax errors and semantic errors (bad algo-
rithms) - somehours or somedays.

The �rst and secondestimation can only be applied to the normal
physicist, sincethe expert should spend time closeto 0 . The third and
fourth estimation shouldbe closeto the lower bound for the expert users,
and closerto the upper bound for the normal physicist.

On the other hand, the system spends time with storageand query
computation, depending on the sizeof the data set. In Hera-B, this used
to take from 3 hours up to three days. Additional time is spent with
the communication network, the data replication and the visualizing tool,
but, as this is of no importance comparedto the sizeof the rest, we can
simply ignore it. Although the user bears the responsibility for this, we
also consider the time for the execution of ine�cien t algorithms. Here,
time from three hours up to three days is lost becausethe result of the
query is always given at the end of the execution,and the user doesnot
have accessto intermediate results to realizethe problem.

The direct conclusionfrom this is that there is too much responsibility
for the performanceof the systemon the user'sside. With the state-of-the
art technologiesand methodologies,it is a very di�cult and speculative
task to estimate how long it will take to run a query.
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4.3 Motiv ation for the Thesis

The present situation is not satisfactory, especially with the growing com-
plexity of the HEP systemsand data storagerequirements.

Given the list of problemsdescribed, this motivates the introduction
of a solid designmethodology. It provides the HEP community with a
way to develop a robust solution where a 
exible query system for this
speci�c domain is produced. There wasno previousattempt to tackle this
problem, which constitutes a challengingmotivation for this thesis.

The solution we search should solve the major problem of the user,
lack of productivit y, by simplifying the way he writes his queries. In other
words, the newapproach shouldincreaseperformanceby reducingthe bur-
denof the userof beingresponsiblefor the optimization, it shouldimprove
the learning curve,it should reducethe error generationrate without los-
ing 
exibilit y and expressiveness,and, �nally , it should reducethe query
production time.

We can expect immediate bene�ts from the required solution. The
framework that will be proposedwill serve as a guideline for future sys-
tematic studies on how to optimize e�ciency of the system and reduce
bottlenecks in the analysis process. This way, developers should have
a well-designedframework, where they are able to increasethe software
performance(with better e�ciency), without interfering with the user's
activities.

4.4 Summary

Scientists analyzing HEP data are often distracted from their real work
becausethey have to learn many details that are completelyunrelated to
physics. Thus, the analysisof data generatedby detectorsin High Energy
Physics(HEP) experiments can be a tedious, ine�cien t and cumbersome
chore.

This meansthat they have the main responsibility for producing opti-
mized code for the analysistasks.

This problem is very well-known in the area. To our knowledge,until
now no real attempt has beenmade to tackle the problem in a compre-
hensive and methodical manner.

The main highlights from this chapter can be summarizedas follows:
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� State of the art: Analysis too cumbersomeand ine�cien t

� Motivation for our work: Build a solution that introducesa method-
ology to increaseproductivit y and performancein HEP data analy-
sis.

In the next part, we introducesomesoftware engineeringconceptsand
computer sciencetools that is usedthroughout the rest of the thesis.



Part I I

Preliminary Concepts
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Chapter 5

Query Systems

5.1 In tro duction to Query Systems

In the previouspart of this thesiswe have explainedthe context of HEP
experiments and the problem it is facing with the current solutions for
analyzing/mining their data. The needto increasethe user'sproductivit y
motivatesour intervention in the traditional HEP query systems.

In order to understandwhat are the commonapproaches,from Com-
puter Scienceand Software Engineer, that best �t into our requirements
we decidedto proceedwith a survey of the area. This helpsus to decide
on what conceptswe can reusefor our solution.

Generally, we can de�ne query systemsasfacilities to processrequests
for information from a database.There are two ways to accessthe data:
programming languagesto write application programs, and query lan-
guages.

In many modern databasesystems,the user has to make requestsfor
information in the form of a stylized query that must bewritten in a special
query language.This languagecanbeusedto interactively interrogate the
databaseand retrieve useful information.

The userinteraction with the databaseincludesfour main tasks: schema
de�nition, query formulation, data update and data visualization. In this
chapter, we concentrate on surveying the di�erent generalapproachesto
the formulation of queries,and we will discussthe bene�ts and drawbacks
of each solution. We �nish this chapter by detailing sometopics which
have to be taken into account when developing Visual Query Systems.
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5.2 Query Systems Taxonom y
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Figure 5.1: Categorizationof existing query systemssince1970

Varioustypesof query languageshave beendeveloped to interact with
storagebases. In order to better understand the work already done in
the area,we have investigateda representativ e set of query languagesand
categorizedthem by their paradigm.

Our proposedcategoriesthat we will further detail in the next sections
are:

� Textual languages:

{ Natural Languages(known by everybody)

{ Arti�cial languages(learnt and known by specialists):
Pure textual languages.
Textual languageswith graphical result

� Non-textual languages:
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{ Tabular languages:

� Skeleton
� Form

{ Graphical languages

{ Visual basedlanguages(metaphor based)

{ Hybrid

� Visual databaseinterfaces

In Fig.5.1 we categorizesomeexamplesof query systems. This chart
is not exhaustive, for instance, we do not specify XML languagesand
we alsodo not mention languagesdeveloped from 1998on. Nevertheless,
we considertheselanguagesto be already representativ e of the di�erent
categoriesproposed.

In order to be able to comparethe di�erent alternativesof query sys-
tems, when analyzing them, we will take particular attention to the fol-
lowing basecomparisoncriterias:

� Expressiveness- Is the able to producecomplexqueries?

� Easy to learn - How fast is the userable to start using the language
in its plenitude?

� Syntax error free - How easy is it to produce syntax errors? (e.g.
misspelling)

� Semantics error free - How easyis it to producequeriesthat do not
do what the user thinks it does?

� Small conceptualdistance-How closeare the representation of the
data entities, languageprimitiv esand their manipulation to the way
the user conceptualizesthem? Doesthe languageforce the user to
think about this aspects in a di�erent way that he had conceptual-
ized them?

� Memorizable- Can the usereasily remember the languagesyntax?

� Easy to use- Does the user gets confusedwith the languagewhile
using it?
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� Non-ambiguous- Can a query have multiple interpretations for the
user?

� Formalizable- Can we formally expressthe language'ssemantics?

A summary of all this characteristicsaccordingto the di�erent query
systemscan be found by the end of this chapter in table 5.5.

5.2.1 Textual Query Languages

Textual query languagescan be either natural or arti�cial.

Natural Query Languages

The natural query systemallows the user to accessinformation stored in
a databaseby requestsin somenatural language(text through keyboard
input and/or voice recognition). An interesting description can be found
in [16].

Advantages:

� There are no arti�cial languagesto learn (becausequeriesare for-
mulated in user'snative language).

� Theselanguagesare better for somequestions(negationsand quan-
ti�cations).

� The context of the dialogueis supported.

Disadvantages:

� Linguistic coverageis not obvious and is hard to remember.

� Linguistic hasoften conceptualfailures,meaningthat there area lot
of ambiguities still to resolve.

� The userassumesintelligence.

� Theselanguagesusually imply a tedious con�guration.

� The computeris an inappropriate mediumfor this kind of languages.

The state of the art in this �eld is a great deal of R&D in someareas
(e.g. dictionaries, parsing, etc.). But scientists still do not agreeon a
commontheory or technique for this area.
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Arti�cial Query Languages

Relational calculus can be consideredas a formal query languagebased
on mathematical logic, and queriesin this languagehave an intuitiv e and
precisemeaning. Relational algebra is another formal query language,
basedon a collection of operators for manipulating relations, which is as
powerful as the calculus[27].

Based on the relational algebra, there exist textual languageslike
the declarative languagesSQL, or QUEL, and the functional language
DAPLEX[86], etc.

Although OODBs exist alreadysince1986[70], they got the �rst query
language,OQL[3], not until 1994.Deductivedatabases,on the other hand,
area combination of a conventional databasecontaining facts,a knowledge
basecontaining rules, and an inferenceenginewhich allows the derivation
of information implied by the facts and rules. Commonly, the knowledge
baseis expressedin a subsetof �rst-order logic languageslike Datalog.

In the categoryof arti�cial query languages,we will also considerthe
extensionsto textual query languageswith visualization techniques(very
often usedfor geographicapplications). The query is described textually
and the systemretrievesits result set in visual format. Examplesof these
are: GEO-QUEL, Query-by-Picture Example(QPE)[26], PSQL, PROBE,
PICQUERY[64].

We do not considertextual query languageswith visualization tech-
niques included into the interfacescategory (described later). The main
reasonis that while with the former languagesthe user can expressan
elaborated query, in the later category, querieshave a �xed simple pat-
tern (therefore are not very expressive).

Advantages:

� Besidesthe formalization, one of the main advantages of textual
languagesis the reducedambiguity.

� Existing query languagestypically allow to work on the logical level,
but not on the conceptuallevel.

Disadvantages:

� Theselanguagesrely on the user'smemorization of their syntax.
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5.2.2 Non-T extual Query Languages

Non-textual query languages,also called direct manipulation languages,
usually imply visual query systems(VQS). Those systemsmake use of
visual query languages(VQL) which expressthe requestvisually with a
set of de�ned operators. Theselanguagesmake useof the visibilit y of the
objects of interest and their direct manipulation.

VQSstry to make it easyto deal with the logical model. They make
useof VQLs to get closerto the mental model, which is a di�cult task,
sinceat two dimensionsthe ambiguity increasesgreatly, comparedto the
onedimensionof text queries. In order to pursue this goal, the language
shouldbecharacterizedasfollows: it shouldbeclear(without many visual
objects), easilyreadable,simple,and unambiguous(from the point of view
of the interpretation by a computer program).

Presently, there is a very active research on visual query databases
for formalization, user-interaction techniquesand expressiveness.In [25],
there is an exhaustive and systematic study of VQSsfor querying tradi-
tional databasesthat deal with alphanumeric data.

Generaladvantages:

� There is lessdistancebetweenthe user'smental model of reality and
the representation of reality proposedby the computer.

� The basic functionality of the interaction is easyto learn.

� Highly e�cien t alsofor expert users,mainly becauseof the possibil-
it y of de�ning new functions and features.

� The rate of semantic and syntactic errors is signi�cantly reduced.

Generaldisadvantages:

� Theselanguagesare more di�cult to design. A visual query might
not have a unique translation into a textual query.

� They are more di�cult to implement.

� Sometypesof query languagesshow a lack of formalization, in con-
trast to textual query languages.
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� As for textual query languages,but speci�cally for visual languages,
systemsdealing with image data, non-structured text data, geo-
graphical data and physicsdata have di�erent characteristics. The
systemmust dealwith the di�erent kinds of data, and its data model,
in distinct ways.

A wide variety of visual query languageshave beenstudied over the
years,each designedfor a particular data model. For instance,we can �nd
visual languagesfor speci�c applications like temporal databases,hyper-
text systems,statistical databases,geographicdatabases,videodatabases,
etc. Usually, the data thesesystemshave to deal with rangesfrom image
data, unstructured text data or geographicaldata to alphanumericaldata,
each having di�erent characteristics.

In order to �nd interesting properties we have categorizeddi�erent
VQLs according to their similarities into: tabular languages,graphical-
basedlanguages,metaphorsand hybrid languages.We will specify each
of them in the rest of this section.

Very shortly, we can say that the �rst successfulvisual query lan-
guageswere the tabular ones, basedon the relational data model and
ER modeling tools. The next generation of visual languagesto appear
were the graph-basedones,characterizedby their great expressive power
and their formalization strength. They were, however, awkward to use
since they were strictly bound to the logical model and did not try to
deal with the conceptualmodel. Graph-basedlanguagesusedboth rela-
tional and object-oriented models. Other generalvisual languageswere
the metaphor-basedthat dealt with the conceptualmodel but lacked the

exibilit y and formalization of graph-basedones,especially becauseof the
fact that they tend to be ambiguous. Finally, hybrid-based languages,
which use the object-oriented data model, tried to pick the best quali-
ties from the di�erent approachesand are nowadays the most promising
languages.

Tabular Languages

They are consideredto be the �rst visual query languagesthat brought
the conceptof user-friendlinessand 
exible querying into the evolution of
arti�cial textual languages.
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Figure 5.2: Example of tabular languagestaken from [18].

� Skeleton-based - Each relation is represented by a two-dimensional
skeleton in which the column headingsshow the namesof the rela-
tions and the namesof the attributes. The query is expressedby
�lling the skeletonswith a combination of variables, constants and
keywords that give an exampleof the possibleanswer. An example
can be found in Fig.5.2(a).

Query-by-example[94] wasoneof the �rst attempts which analyzed
querying in a non-textual way (usedasa basisfor many commercial
databasesystems). It is very convenient for simple queries, but
awkward for complex ones. It supports transitive closure,which is
an extensionof relational query languages.It hasbeenextendedto
deal with aggregatequeries.

Another formally de�ned languageof this kind, VQL[90], makesuse
of di�erent data models: relational, extendedrelational and object-
oriented.

� Form-based - Seenasan evolution of skeleton-basedlanguagesmak-
ing use of the multi-windowing technology. Each object type has
its own dedicatedwindow. In this window, the user can seemenus
of commands,lists of prede�ned constants or menus of operations
just by clicking the mouseon buttons or icons. For a query, the
user �lls out the forms of the related object types. An examplecan
be found in Fig.5.2(b).Examplesof this languagesare: G-WHIZ[77]
for the functional data model where recursive queriesare allowed,
OOQBE[88](Object oriented queryby example),and PICQUERY+
[64].
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Advantages:

� Generally, theselanguagesare user-friendly (form-basedmore than
skeleton-based).It is more convenient than just typing on the key-
board.

� These languageshave less things to learn. It is not necessaryto
remember the databaseschema,and the user is aware at any point
how to navigate through it.

Disadvantages:

� Complex querieshave an awkward representation. Somejoin oper-
ations must be expressedby meansof variables,which is a sourceof
mistakes.

� These languageshave very poor visual representation of the data
model concepts.

Graph Query Languages
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Figure 5.3: Example of GraphLog [37].

Graphical query languagescorrespond to queries that are actually
graphs (graph-theoretic perspective). It is basedon the use of symbols
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which represent the data model concepts. Thesesymbols, such as rect-
angles, circles and arrows, are pure graphical conventions without any
metaphorical power. As a consequence,they need to be explained and
memorized.

GQLs aremoresuited to be formalized,given their precisemathemati-
cal structure (i.e., graph). This formalization makesit possibleto compare
them with other query languagesand to preciselyevaluate their expressive
power.

The databaseschema is usually visualized by a graph where nodes
represent the objects and arrows the relations betweenthem. With their
knowledge acquired by schema browsing, end-usersexpresstheir query
following a mode which varieswith the consideredlanguage:

� The userbuilds a querygraph in a separatewindow. This graphuses
the symbolsof the databaseschema. The usercanalsousesomenew
conventions in order to visualizea selectionpredicate, for instance,
or to mark the elements which must be printed in the query result.

� The user directly marks on the databaseschema graph which el-
ements are relevant for the query, and then he also usesdi�erent
menus to to specify the selectioncriteria.

The majorit y of theselanguagesis basedin the context of visualization
in deductive databases.The semantics of the graphicalprimitiv esis given
as a translation to Datalog. Mostly, they were declarative and meant to
query graphs. Examplesof theseareGOOD[58], GraphLog[37], Hyperlog,
VDM/VDL, VQL[72], G2QL[53], etc.

Other kinds of graph-basedlanguagesmake use of graphs purely for
specifying primitiv esthat can be mapped to textual languagecommands.
The useof graphsis mostly related to the formalization power and, conse-
quently, to the unambiguity that it provides. The semantics of the graph-
ical primitiv esis given asa translation of statements of an object-oriented
programming language supported by the underlying database. There
are several examplesof this last type of graph-basedlanguagesquery-
ing both entit y-relationship and object-oriented models. Listing them we
�nd: SNAP[22], QBD � [17], QBD � , VQL-MK[72], ERC[42], SNAP[22],
GQL[76], that usethe functional querying paradigm.

Hygraphsare an extensionto the graph theory, incorporating blobs in
addition to edges.A blob relatesa containing nodewith a setof contained
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nodes. It is possibleto assignsemantics to the relationships represented
by blobs. Someother conceptswere added through colored graphs (G-
Log[78]), where the body of the rule is colored red and the head green.
The samedirected labeledgraphsare usedto represent databaseschema
and instances. The nodes of the instance graphs stand for objects, and
the edgesindicate relationshipsbetweenvalues. Examplesof this type of
languagesare Hy+ [36] and G+[41].

Main advantages:

� Theselanguagesare more formalizable.

� They make better useof the visual medium than tabular languages.

� Theselanguagesarepowerful enoughto expressmorecomplexqueries
(transitiv e closure, recursionand computation of paths in directed
graphs).

� It is a natural way of querying schemaintensive domains,wherewe
�nd a large number of classesand many interrelationships between
them.

Main disadvantages:

� Requiresexperiencedprogrammersto exploit its power, sinceit uses
of a lot of symbols that are only graphical conventions.

� The visual notation does not have a direct meaning, (a triangle
meanssomething that is de�ned by the person that designedthe
language). Instead, they have underlying conceptsthat are not per-
ceived in a metaphorical way.

� They are costly to designand implement.

� Complex queriesvery easily becomeunreadable.

� Theselanguagesneedto be explainedand memorized.

� The semantic distancebetweenthe real world and the databaseuni-
verseis still too big for the normal end-user/non-programmer.
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Figure 5.4: Cigales[79] Metaphor-based.Usesthe map metaphor. Exam-
ple taken from [18].

Metaphor-based Visual Languages

This kind of visual languagesusesmetaphorsto show the concepts.Meta-
phors take the mental model of the end-userinto account. An exampleof
theselanguagesis VISTA[20], wherethe metaphor is a room with objects
to manipulate inside, or Cigales[79] (seeFig.5.4), representing a map.

The way the userexpresseshis query varieswidely and mainly depends
on the metaphor chosenby the languagedeveloper.

Advantages:

� Theselanguageso�er an intuitiv eand incremental view of the queries.

Disadvantages:

� It is very di�cult to �nd an adequatemetaphor for a problem in a
given context.

� There is no proper software engineeringmethodology to designsuch
a language.

� The risk of failing as a query languageis very high.

� Very often, a multidisciplinary development team (computer scien-
tists, psychologists,designers,etc.) is required.



5.2. QUERY SYSTEMS TAXONOMY 57

� Usually theselanguageshave poor expressive power.

� Very often theselanguagessu�er from executionine�ciency .

� The systemmight have multiple interpretations for a query.

� Theselanguageshave di�culties to handle objects that do not nec-
essarily have a visual representation (like arrays, lists, stacks, and
application-oriented data typeslike forms and documents).

The Hybrid Approac h

Figure 5.5: Hybrid languageVOODOO[50] (basedon OQL).

This category of languagesusesthe power of formalization of graphs
(de�ning the abstract syntax with them) and the concretesyntax (mak-
ing useof combined menu-basedand simplemetaphor-basedsolutions) to
reducethe mental gap.

The underlying principle of thesesystemsis to provide a visual repre-
sentation of the data residingwithin objects, and to o�er visual operators
for navigating through related objects. In other words, there is a direct
correspondencebetween each window and an object in the underlying
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database. Two kinds of interactions are usually supported by theseob-
ject browsers: navigation within a collection of objects, and navigation
betweenobjects by the way of their relationships.

In thesesystems,it is alsovery commonto usethe �lter 
o w metaphor
proposedin [84],wherethe water 
o ws through a seriesof pipesand �lters
and each �lter lets through only the appropriate items. The layout of the
pipesindicates the relationshipsof _ and ^ .

Examples of these languagesare DOODLE [40], Kaleidoquery [74],
OdeView [2], VQL-VAD [90], SNAP [22], PASTA-3 [67], PESTO [23],
QUIVER [71], VOODOO [50].

Advantages:

� The structure of the databaseclasses,attributes and relationships
is readily available for the users.Usually, it is just \one click away"
from the layout.

� For non-programmers,it is easyto memorizethe languageand to
learn the schema.

� The way to deal with �lter predicatesin the 
o w metaphor is close
to intuitiv e.

� Designedto dealwith a generalpurposequery language,usually can
be mapped into object-oriented query languages.

5.2.3 Visual Database In terfaces

The main task of thesesystemsis to perform schemabrowsing, or result
visualization. They are in
exible and are mostly tools for visualizing a
database,but do not contain a formally de�ned query language.

With this kind of system, the userscan accessthe information easily
and quickly without having to give an exact description of it or where it
is stored in the database. There are four standard operations common
to theseapplications: structuring, �ltering, panning, and zooming. This
meansa �xed query pattern of selectedproject queries.

Wecan�nd examplesof visual interfacesimplemented on top of the re-
lational model to browsethe schema: CUPID[69], SDMS[60],GUIDE[93],
LID[52], ISIS[57], SKI[65], etc. As far as interfacesfor object-relational
models are concerned,we have: PBL+, DAA+ (on top of SUPER)[45],
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DGJSA (on top of ODEVIEW[2]), PESTO[23], KIVIEW[73 ], LID[52],
etc.

Advantages:

� Theselanguagesare easyto useand very good for occasional,unex-
periencedusers,with simple, repetitiv e requests.

� The �xed setof queries,with a very well-known querypattern, makes
the systemeasily optimizable.

Disadvantages:

� Do not have a properly formulated query language. As a conse-
quence,it is not possibleto formulate complex,elaborated queries.

5.2.4 Summary of Features

A comparisonof all the mentioned querysystemsis summarizedin Fig.5.5.
From that, wecanconcludethat hybrid systemsmanageto gatherbene�ts
from other visual languages.They are potentially the best approach for
developing a new languagefor non-experts on programming. They can
can be learnedquickly and have reducederror rates. As we will seein the
following chapters, we have taken theseconsiderationsinto account when
developing our own solution.

5.3 Building a Visual Query System

After we have decidedthe type of query systemthat is more appropriate
to our goals,we now have to considerthe implications on its designand
development.

A VQShasthe samegoalasany user-interfaceapplication: it is meant
to simplify the user-systeminteraction. A VQSincludesa VQL and a vari-
ety of functionalities to facilitate man-machine interactions. When build-
ing such a system, three major topics must be covered: schema display
and navigation, query creation and result visualization, query optimiza-
tion and evaluation.
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Table 5.1: Query languagescomparison
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5.3.1 The Visual Language

For the development of an e�ective languagefor visual interaction with a
complexknowledgebase,there are four major requirements:

� There should be given a set of visual languageprimitiv es, i.e. a set
of graphical iconsthat constitute the alphabet of the language.

� With this language,it must bepossiblefor the userto easilycombine
the primitiv es in di�erent ways to createvalid queries. This means
that a syntax and grammar for combining various visual primitiv es
has to be speci�ed.

� Special symbols have to be designedwhich represent query targets,
databasevariablesand logical constraints.

� For easeof conceptualvisualization, it is necessarythat the visual
query languagedeveloped for a particular data model consistsof
primitiv esthat conceptually (and visually) parallel the schemarep-
resentation mechanism.

5.3.2 Human Factors

VQSsare part of a special subsetof user interfaces. This meansthat an
human-centric development of the software must be usedwhile developing
them. The emphasisshould be on the user comfort, by providing an
accessibleinterface,and on its usability.

The languagedesignershouldalways designthe languagewith a strong
user'sfeedback, trying to understandhow the tool is goingto beperceived,
learned,and mastered. In order to achieve a successfulsystem,the future
usersmust be properly classi�ed into the di�erent kinds of possiblecat-
egories,and their speci�c requirements identi�ed. The engineeringlife
cycle must include a proper validation of the languagethrough usability
evaluation tests. This topic will be deeplydiscussedin chapter 10, which
is dedicatedto the evaluation of our proposedlanguage.

5.4 Summary

VQLs exist to make it easierfor the end-userto deal with the database
systems.
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The main ideaswe want to take from this sectionis that hybrid visual
query languagesare bene�cial comparedto others:

� They reducethe needto previously know the databaseschema, at-
tributes and relationship structure before writing the query. This
meansa short learning phase.

� They reducethe problem of semantic and syntactic errors, meaning
better productivit y.

� They get much closerto the mental model than other languages.



Chapter 6

Domain Speci�c Mo deling

In chapters 2 and 4 we have observed that one of the reasonsfor the
problem we have in hands, with the physics data analysis, is the lack of
abstraction layers. In addition to that, the solution of providing the end
user with a generalpurposelanguageis problematic for several already
discussedreasons.In Software Engineering,onesolution for this kinds of
problems, when the user has to develop his own software products (and
probably is not skilled enough),but wewant to increasehis productivit y, is
to make useof the conceptof Domain Engineeringand develop a Domain
Speci�c Language.

In section 6.1 we start by giving an introduction to the general idea
of Domain Engineering. Then, in section 6.2, we proceedby giving an
overview of the modeling strategy required. Following that, in section
6.3, we shortly discussthe engineeringprocessand in section6.4 we high-
light the advantagesand disadvantagesof domain speci�c languages.We
�nalize with section6.5 by observingsolutionsin HEP that, although un-
structured, couldbeconsideredto beremotely related to domainmodeling
but that did not lead to any learnedlessons.

6.1 In tro duction to Domain Speci�cit y

In order to cope with markets that evolve at a rapid pace,whereit is nec-
essaryto bring solutionsto market quickly and to constantly develop new
software products, a proceduredi�erent from the conventional software
engineeringmethods is necessary.

63
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Domain engineeringapproaches the problem by increasingthe acces-
sibilit y of the information systems,giving the end-usersthe opportunit y
to develop programs. This can only be achieved by raising the level of
abstraction, making commonparts explicit, and, at the sametime, lim-
iting the possibledesign spaceto a single range of products. In other
words, it de�nes a family of applications (instead of developing products
individually) and a production facility (Domain Speci�c LanguageDSL,
generators,tools). The modelsgeneratedare madeup of elements repre-
senting things that are part of the domain world, not the code world.

The direct consequenceof this is that lesstraining is required to usea
process,which speedsup the software development processconsiderably.

Family-speci�c modelinglanguagesmakeproduct familiesexplicit, shift
the abstraction level from designsto the product concept level, and al-
low for a fast and automated variant generation. The languagefollows
the domain abstractionsand semantics, allowing developers to work with
conceptsin their particular domain.

DSLs stand in contrast to general purpose languages(GPL). While
the �rst are dedicatedto a particular domain or problem, beingsmall and
usually declarative, the secondcan be used generally for a wide �eld of
solutions, using imperative, functional or object-oriented styles. A GPL
is usually suboptimal for speci�c applications, especially where it is used
by peoplenot trained assoftware engineers.

We can �nd implementations of domain-speci�c languagesin areas
such as robot control [39], VLSI design [19], CASE tools [85], and GIS
[80]. To our knowledge,no DSVL exists for the analysisof data collected
in physicsexperiments, or other HEP purposes.An interesting summary
and inventory of referencesto DSLs can be found in [91].

6.2 Mo deling Strategy

Domain-speci�c modeling works on the problem level instead of the so-
lution level. This meansthat models are made of elements representing
things that are part of the domain world and not the code world. It is
meant to automate a large portion of software production.

As de�ned by OMG[75], Domain-modeling engineeringexploits a four-
layer meta-data architecture (seeFig.6.1):
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Figure 6.1: Domain-speci�c development

� Meta-meta-mo deling layer - Is the de�nition of a tool that sup-
ports the domain-speci�c languagemodeling.

� Meta-mo deling layer - This features the implementation of the
domain-speci�c modeling language,for instancea languagefor robot
control or for the generation of software for mobile phones. The
designtool for product families reducesthe cost of creating domain-
speci�c toolsby allowing the domainexpert, the domainmodeler, to
specify the syntax and semantics of a languagein the form of a meta-
model and by creating the supported family membersautomatically.

� Mo del layer - The domain user,developer, usesthe domain model
languageto specify his application using concept structures. This
meansthat the developer (or userof the DSL) is able to model the
family member. For example,the usermodelsthe newrobot control
software for an automobile painting procedurein a new production
line, or the new control software for the new mobile hardware.

� Ob ject layer (or Instance layer) - This layer represents the au-
tomatic code generation. This implies the existenceof a domain-
speci�c component library, and, of course,the automatic code gen-
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erator. The model speci�ed is mapped to code that calls the com-
ponents.

Domain modeling shouldnot beconfusedwith modeling languageslike
UML, sincethoseare basedon code structures and make useof semantic
conceptsof programminglanguages.The usersusually have to make error
prone mapping of domain conceptsinto UML and then to program code,
which requiresa good knowledgeof software engineering.

6.3 DSL Engineering Pro cess

During the analysisphaseof the development of a domainspeci�c language
wemust identify the problemdomain,gatherall relevant knowledgein this
domain and cluster this knowledge.

After this preliminary analysis,we must proceedwith the family- ori-
ented software development. This entails de�ning the family with its ter-
minology, commonalities and variabilities. A good introduction to the
family analysisand the de�nition processcan be found in [38]. Basically,
we identify and use the abstractions that are common to all known, or
predicted, family members,and we structure the designto allow changes.
Sourcesof abstraction are the terminology usedto describe the family and
assumptionsthat are true for all family members. To identify the scope of
the family, the analysismust include predictions of how family members
will vary.

Implementation usually involves constructing a library that imple-
ments the semantic notions. In the following, we build a compiler that
translatesDSL into a sequenceof library calls.

6.4 Adv antages and Disadv antages

From [89], comparingthe bene�ts of DSLs over GPLs, we have:

� Familiar programnotation - DSL usedomainnotations, which makes
the languagemore readable,and its speci�cation more accessibleto
the domain users(normally non-programmers).
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� Design reuse- The user has a well-de�ned path to develop his ap-
plication. This is convenient sincethe code needsto be tested only
once.

� High-level abstraction - The usersdealswith constructsat a higher
level of abstraction. This way the user doesnot have to deal with
error-prone and low-level implementation details. As always, more
levels of abstraction reducecomplexity, shorteningthe development
and the testing phase.

� Clear conciseprogram speci�cation - program speci�cations can be
by big factors smaller than the corresponding speci�cation in the
GPL.

� Program checking - As a result of using a restricted language,it is
possibleto catch somesemantic errors which cannot be caught by
with a GPL compiler.

� E�cien t execution- DSL programscan have at least the sameper-
formanceas in commongeneralpurposelanguages.

� Reducestime and e�ort drastically - There is a payo� at the devel-
opment and production of family members. DSLs enhanceproduc-
tivit y, reliabilit y, maintainabilit y and portabilit y.

In addition to this list, we can say that the target code, as it is au-
tomatically generated,doesnot contain syntax and logic errors. This is
determined by the semantic and modeling rules captured in the meta-
model.

The obvious drawbacks of this approach are mainly related to the fact
that DSLs are di�cult and costly to build, since each requires its own
signi�cant designand development e�ort, and each domain supported by
a tool is speci�c to a certain type of problem (limited marketing).

DSLs can only be developed with the involvement of experts in the
speci�c �eld that they weredeveloped to, sincein most cases,the domain
is very complex. This development is only justi�ed if it canbeexpectedto
generatea number of family products. Thus, the developer must evaluate
and balancethe costsof designingeach tool from scratch or using a DSL.

As stated in [38], the successdependson how well the software engi-
neerscan predict which family members will be needed. The conceptof
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family member is not well formalized, there are no rules that enableengi-
neersto identify familieseasily, the prediction of variations is di�cult and
implies spendingtime for family analysisduring the development process.

6.5 DSL \A ttempts" in HEP

In order to avoid to \redo the wheel", we had to determineif any domain
speci�c approach hasbeentaken beforein HEP analysis.

Wehaveobservedthat AnalysisframeworkslikeROOT[81], speci�cally
designedfor this domain,do not hide the internal complexity of the library
of functions from the querycodeprogrammedmakinguseof a GPL object-
oriented programming language(C++). With time, the libraries become
larger and more generic. The consequenceis that the usability decreases
becauseof the multiplicit y of entry points, parametersand optionso�ered.

From our research wealsofound out that someexperiments which tried
to reducethe problem of the generalpurposeapproach, have usedrudi-
mental textual domain- speci�c commands. We have KAL in the exper-
iment ARGUS/DESY[5] (from the early 90s), or "Z in ZEUS/DESY[29]
(from the late 90sand early 00), or even ATGEN in ATLAS/CERN[34 ]
(still being built). This shows that the question of how to improve the
user's productivit y in HEP is already standing for long, and developers
have been trying to answer it. Unfortunately, almost no documentation
has been written about them, and we can not proceedwith a thorough
evaluation of them. Sincethey had no methodological approach like the
de�nition of the objects and their operators with the help of an alphabet
and a grammar, we cannot call them languages.They are just collections
of somecommoncommands,with no formal speci�cation. They werevery
in
exible and con�ned to the scope of the experiments where they were
developed, and did not lead to their standardization. The main reason
of this is that the abstraction was weak. The positive contribution of
thesetools was to help gathering domain-speci�c functions in component
libraries.

We concludethat introducing a structured domain speci�c language
in this HEP can be consideredto be a pioneeridea.
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6.6 Summary

Domain-speci�c engineeringmethodologycomesinto play whena family of
applicationshasto be developed by usersthat arenot necessarilysoftware
engineers,in a speci�c domain. It focuseson generatinga languagethat
gives the user the possibility to center on what to compute in opposition
to how to compute,so that he doesnot needto be a skilled programmer.

The development of a DSL reducestime and cost involved in the de-
velopment and modi�cation of a family of tools in a certain domain.
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Chapter 7

The Solution

In this chapter we present our proposal for solving the problem of lack of
productivit y in HEP analysis,already described in chapter 4.

Our hypothesis,explainedin section7.1, is that we cansolve the prob-
lem by developing a Domain Speci�c Visual Query Language. In section
7.2 we give arguments to support this idea. In section7.3 we de�ne what
we expect to obtain as result of a developed solution. Finally, we sketch
the servicesoverview of the required system7.3.1.

7.1 Prop osed Approac h

The usualway how we can simplify a user'sinteraction with a systemand
make it more 
exible for incorporating changesis to introduce di�erent
layers of abstraction. In the ideal case,we want to be able to abstract
the user's point of view (conceptual layer) from the data representation
(logical layer) and this, in turn, from the actual data storage (physical
layer).

In order to raise the abstraction levels, increaseproductivit y and give
experts a clear architecture where it is more easy increasee�ciency by
tracking new points of optimization in the analysisquery system,we pro-
pose to introduce a properly de�ned declarative visual query language
(and system) speci�c to the HEP domain, by meansof an adequatede-
velopment process.

We propose a unifying framework for analysis, called PHEASANT
(PHysicist's EAsy ANalysis Tool), that distinguishesbetweenthe concep-
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PAW ROOT ARTE BEE relational
database

Fortran C++ C,C++,Fortran C++ SQL
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VQL
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Figure 7.1: Unifying framework - The user views his particular analysis
framework in the sameway as others.

tual, logical, and the physical layer of the data and presents the sameview
to the user for each analysis framework he is working with. At the con-
ceptual level, this framework featuresthe �rst declarative domain-speci�c
visual query language(DSVQL) for HEP analysiscalled PHEASANT QL
in which physicists are enabled to construct queriesusing familiar con-
cepts, opening up a new application area. If it is not necessaryto know
implementation details or certain programmingskills, it is much easierfor
a user to becomeacquainted with the framework.

At the logical level, we provide a more detailed representation of the
data in form of a logical schema. However, this representation still hides
implementation details. The visual languagequeriesare mapped onto an
algebrawhich operateson the logical schema.

At the physical level, di�erent (existing) tools can be pluggedinto our
framework via code generationmodules (represented by gi in Fig.7.1). A
code generation module translates the algebraic form of the query into
the appropriate syntax of the corresponding tool. This way, if the query
primitiv es do not change,developers may introduce changesin the core
technology, storagelayer, physical model and physical algorithms without
a�ecting the user. With a proper abstraction designthe framework can
be extendedwrapping around new tools (like histogramsgenerators)in a
quite elegant way.
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7.2 Wh y a DSV QL?

The concept of a domain-speci�c visual query language(DSVQL) gath-
ers several other conceptsand their qualities into one: visual query lan-
guages,declarative languagesand domain speci�cit y. The several bene�ts
discussedin the previoussecondpart of this thesisjustify the combination
of them to derive the solution.

In fact, the languageshould be domain-speci�c becausein this com-
plex domain, whereusershave to code their querieshundredsof times to
completean investigation, it is justi�ed to develop a solution that gathers
the patterns and data objects into the user's conceptual notions of the
domain, and automate the generationof query code. Obviously, a fam-
ily of products has commonalitiesthat can be explored to perform code
reuse.Moreover, the physicscommunity is usually not trained in software
engineering. Automating the generation of code releasesthe burden of
writing it. In fact, generalpurposelanguages(GPL) have shown to be
di�cult for the user in this domain.

We suggestthat the languageshould be declarative, since the user
bene�ts from the fact that no programming logic is involved. As we have
seenbefore in chapter 5, it should also be visual sinceit is easierto use
and learn, and reducesthe error rate.

7.3 Exp ected Results

By introducing the DSVQL, we expect to improve the user's productiv-
it y. This is the immediate result of introducing clear abstraction layers.
Furthermore, it helpshiding details of storageand e�ciency .

An commonly acceptedquery languagefor the domain will be ben-
e�cial to the end-user. The physicists non-experts in programming will
no longer have to cope with di�erent languagesin di�erent experiments.
They will get no moreerror-pronemappingsto other languages.As a con-
sequence,it can be expected that they will learn the systemand design
their queriesmore quickly.

On the other hand, expert users,beingusedto hack their systems,will
have an extra tool to speedup their analysis,without necessarilyloosing
expressive power.

Finally, developers of analysis frameworks will have a system with
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properly isolated modular levels at their disposal. This improved archi-
tecture will give them plenty of room for system e�ciency and design
improvements with the extra bene�t that producedchangesdo not a�ect
the rest of the modulesand, in consequence,the rest of the analysischain.
The users,hopefully, will not realizethe changes,exceptfor the increased
e�ciency of the system. This meansthat they do not needto changetheir
query in order to cope with a new systeminterface.

7.3.1 System Overview

In Fig.7.2we sketch the generalservicesof the systemwe want to develop.

Language Developer

User

Language Description

Specific Data Model
Library Components

Query Model

Target Code

Experiment Design Expert 

Meta�Model

Meta�Data

Description

Description

Query

Model

Figure 7.2: Systemservices

The developed systemprovides facilities for specifying the visual lan-
guagemeta-model. This modeling is done by two actors: the language
developer, responsible for describing the language(and that might want
to extend the language),and the Experiment Designexpert, responsible
for specifying the data model and the library of functions available to the
physicist.

At the physicist (user) modeling level, the systemprovides the hybrid
visual query language,whoseoperators were de�ned at the meta-model
level, with characteristicssimilar to what wasalreadydescribed in chapter
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5. This languageraisesthe level of abstraction in such a way that the end
users can ignore the implementation of the frameworks and can share
their queries (i.e. have a way to talk about the speci�cation of their
querieswithout having to go deeply into the details of the programming
environment).

Once the query is modeledby the physicist, the systemwill generate
the target sourcecode, that runs on the target analysisframework.

In order to cope with the domain adaptability and evolution of both
the data schemaand the library of components, we proposeto usea meta-
data system(in Fig.7.2 represented at the bottom left sidecontaining grey
boxes) that dealswith the versionsof the di�erent query models(keeping
track of what versionsmake a given query valid), the user history, and
with the data and component library elements. This conceptwill not be
studied in this thesis,but we proposeit as future work instead.

In the following chapters, we will describe how we have developed a
language(PHEASANT QL) and a prototype of a framework (PHEAS-
ANT) that meetsthe requirements.

7.4 Summary

In order to answer the questionof how to developa systematicapproach to
improve the analysis' framework performanceby increasingthe user'spro-
ductivit y? We proposethe introduction of a declarative domain-speci�c
visual query language.This should be implemented by a unifying frame-
work.

� We proposea DSVQL as a way to:

{ Raisethe abstraction level

{ Modularize the architecture

{ Structure the points of optimization

{ Have a more usable interface, since it is close to the user's
concepts

� Why declarative?

{ The userstatesthe problem and not the solution
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� Why visual?

{ More intuitiv e and easyto useand learn

{ Helps reducing the error rate

� Why domain speci�c?

{ The query languagedealswith the physicist's concepts.

{ GPLs are di�cult for the user in this domain

The next chapters, are dedicatedto describe the designand develop-
ment of the solution. In chapter 8 we formally de�ne the new language,
calledPHEASANT QL, and in chapter 9 wedescribe the prototype frame-
work that implements it.



Chapter 8

Query Language -
PHEASANT QL

We dedicatethis chapter to the completedescription of the new PHEAS-
ANT Query Language.The syntax and the semantics of the languageare
detailed.

8.1 In tro duction

Any query languageshould be speci�ed by meansof a formal syntax and
semantics. This approach is bene�cial since then we are forced to de-
velop both major conceptsof the languageand the details, leading to a
correct implementation. Additionally , the user has a unique and clearly
determinedsemantics for any sentence in the language.

The syntax of a languageis a set of rules that de�ne the ways symbols
may be combined to createwell-formed sentencesin that language. The
semantics, on the other hand, deals with the meaning of programs, i.e.
how they behave when executedon computers.

In this chapter wedescribeboth syntax andsemantics of the newly pro-
posedquery language,PHEASANT QL[10, 9]. We start by summarizing
someconceptsof languagespeci�cation. Then, we introduce the syntax
with the notation andalphabet of our proposedlanguage,motivating them
with the user's conceptual layer of this speci�c domain. After that, we
specify the semantics of the language,making useof translational seman-
tics. In other words, we de�ne the semantics of our languageby mapping
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it into our own Algebra (someof the operatorswerebasedon the work of
[51]).

8.2 Syntax

Commonly, the syntax de�nition of a languageis a formalization of its
internal structure, called grammar, that lists the symbols for building
words, the word structure, the structure of well-formed phrasesand the
sentence structures. This structure is often formally de�ned by using a
notation known asBackus-NaurForm (BNF). This BNF de�nition is a set
of rules where the left-hand side is a non-terminal, also called structural
type. The right-hand side is composedusing both terminal symbols and
non-terminals that de�ne the structure of the non-terminal symbol at the
left-hand side. When describingthe grammarof PHEASANT QL in 8.2.4,
we will have the chanceof detailing this subject more deeply.

8.2.1 Concrete versus Abstract Syntax

Concretesyntax establishesthe concretevisual representation of language
elements, de�ning that a certain entit y shouldbe represented by a speci�c
geometricshape, de�ning the layout and spatial relationships. In visual
query languages,this is a subject important for the �eld visual parsing[92],
since it studies the recognition of concretesyntax elements. The result
of the interpretation of theserules is usually a spatial relationship graph
(SRG). This graph will bemapped into an Abstract Syntax Graph (ASG),
which contains only the logical structure, abstracting concretedetails like
distances,shapes,sizes,etc. In this chapter, our languagewill be de�ned
by meansof the Abstract Notation.

8.2.2 Overview of PHEASANT QL

The user'sconceptualview of PHEASANT is basedon the stream of ob-
jects 
o wing through four major steps. This view, aswe are explaining in
this section,motivatesthe designof a speci�c language'svisual syntax for
this domain. The underlying logical schemaand manipulation of the data
is detailed in the section8.3.1, where we describe the semantic mapping
of this language.
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When specifying a query, the user has to go through four sequential
steps, where one feedsthe next. Although they are not linked visually,
the usermentally connectsthe steps' 
o w. It starts with the operatorsfor
data collection,meaning�ltering speci�ed setsof Eventobjects,which will
"feed" the rest of the query operators and, consequently, the rest of the
query steps. The omissionof theseoperators will assumethat all Event
objects from the universeof the stored events will be chosen.

As a secondstep, the set of Eventsselectedwill be �ltered out by the
user's�lter predicateson the Event attributes. This reducedset of Events
will serve as input to the third query step of reconstruction and �ltering
of speci�ed decays. If the Event �lter operatorsare omitted, all the event
objects are selectedfrom the previousstep.

The query described in the third step looksat the data objects (Parti-
clesand Vertexes)associated with each Event and extracts a set of Decays
for each of them. For the user, a Decay is a set of related particles, ver-
texesand objects newly generatedas the result of the description of the
declarative query.

The result of this step, the set of Decays, will 
o w to the target oper-
ators of the fourth and last step wherethe result operators are speci�ed.
The user will get as a result from his query a Histogram, a value of a
Basic type (meaning Float or Integer), or, if a result operator is missing,
a set of Decays to \feed" other analysistools.

In the next informal description of the user perspective of the frame-
work, we usethe notation f Eventg to meana set of Events, and f Decayg
to meana set of Decays.

8.2.3 PHEASANT QL Alphab et - Symbolic Nota-
tion

In this section,we introducethe basicbuilding blocks or visual operators
of our languagewith the help of a running example. We baseit on the
query presented in Fig.2.1. In someof the operators we introduce, we
have associated with them a secondlevel (indirectly visual) of textual
description of parameterslike a list of attributes and �lter predicates(in
a looseapproximation this meansa projection of a set of attributes and
a selectionbasedon a �lter predicate in the relational approach). For
the full understandingof theseoperatorsat the logical level and how they
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run3
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Figure 8.1: Example of a completequery: the D + decay

interact with each other, we are going to describe the grammar and the
formal semantics in the following sections.

Fig.8.1 shows the complete query, where four major steps are inte-
grated in the visual query sentence.

Selecting Collections

R

Figure 8.2: Collecting the data in step 1

First of all, we have to decidewhich collection or collectionsof event
data to use (e.g. Runs, private event collections etc.). This task of se-
lecting the collection objects according to a predicate criteria over the
properties of the referred collections, is performed by the collection op-
erator, which is represented by a small disk symbol (seeFig.8.2). Let
us assumefor a moment that we are only interestedin the data from the
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third run. So,in a �rst step,we have a collectionoperator that selectsthis
data for us. This symbol re
ects the user'sperspective on the Collection
classentit y that are interpreted as collection objects (like in the object-
oriented approach). Collections' �lter sentencescan be composedusing a
combination of theseoperators with standard set operators \ ; [ , and n.
Fig.8.3 shows the signaturesof the di�erent collection operators.

The query described in this step selectsa subsetof the speci�ed col-
lections. This is done by using a �lter predicate over the collection. Af-
terwards, the set of events to which the selectedcollections refer to are
united and passedto the next phase.

In our running example,we have the left operator in the upper part of
Fig.8.1 that tells the systemthat we are interested in the data from the
third run. The list of attributes (hidden in the schema) is a set of proper-
ties of the run like f r unid; quality ; itr ; otr; : : : g, and the �lter predicates
would be for instancef runid = 3 ^ itr = tr ue^ otr = f alseg.

Collection

R

collection
pred ! f Eventg

Union
U f Eventg � f Eventg ! f Eventg

Intersection

U f Eventg � f Eventg ! f Eventg
Di�erence

\ f Eventg � f Eventg ! f Eventg

Figure 8.3: Signatureof the Collection PHEASANT Operators

Selecting Events

Figure 8.4: Collecting the data in step 2
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The secondstep involvesdealingwith the set of Events resulting from
the �rst step. Thosethat are collectedin the �rst step will be �ltered out
by predicateslike 'coasting beam=true' , or other arithmetic inequalities
with physics formulas that make use of the Event attributes (algebraic
expressionsjoined by inequality symbols like >; <; > = ; < = ; : : : ). This
way, a smaller subset of events is selectedto feed the following steps.
Fig.8.5 shows the Event operator signature.

Event

pred f Eventg ! f Eventg

Figure 8.5: Signatureof PHEASANT Operators for the Event �ltering

Selecting the Decay

Figure 8.6: Selection,Aggregation, Transformation, Transformation Re-
sult

For the third step, that is going to deal with the multiv alued data
referencedby the Event objects, we needfour more operators: Selection,
Aggregation,Transformation, and Transformation Result (seeFig.8.6 for
their symbols). At this step, the query dealswith the input data of one
event at a time, dealingwith the objects it is composedof. The resulting
setsof relatedobjects, the decay, arehandedover to the fourth querystep.

From the perspective of the user, the Selectionoperator selectsactual
particles detected during these events to be added to the decay that is
going to be the input of the Result step. The operator �lters them ac-
cording to predicatesthat refer to special particles' attributes, like having
0mass > 0:40. In this step, the origin of the object 
o w starts at the
Selectionoperators that are leavesof the tree.

The Transformation and Aggregation operators work only on the re-
sults of Selectionoperators. Again, from the user's perspective, Trans-
formation combines the results of two (or more) selectionsaccording to
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user-de�ned �lter predicates. Usually, this results in the construction of
a particle higher up in the decay chain (added to the decay or decays of
the particular event). So the transformation operator createsnew par-
ticle objects with the data from previous selections. Thesenew objects
are represented with the Transformation Result operator, which we usea
symbol similar to the Selectionoperator, becauseboth of them describe
the objects to be added to the decay. From the computational point of
view, this corresponds to a join of the input object streams,followed by
an aggregationthat generatesa new object element in the decay through
some special user-de�ned functions called vertexing (that compute the
attributes for the new particles).

An aggregationsums up information on particles per event, i.e. we
get one result for each event. It is a grouping of the decays by event
and a subsequent aggregation (using a user-de�ned aggregatefunction
like D + :max(mass)).

Now we needa way to connect the objects. For this, we usea simple
line with an arrow that describes the data 
o w from one operator to
another.

A)

B)

X Y

X Y

X Y

Figure 8.7: A) ComparisonB) Minimal distance

Our languagesupports two more primitiv es to relate the result of Se-
lection operators: the Comparison and the Minimal Distance operators
(seeFig.8.7). Both of them relate the two di�erent input streams and
apply a selectionpredicate.

The �rst one,the comparisonoperator, comparesa particular attribute
valueof someobject from each decay (X) to thoseof the decay (Y) within
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the sameEvent. In doing so, it �lters out particles that do not satisfy
the condition of the comparisonoperator. It represents an algebraicjoin
under a condition predicate.

The secondcaseis the Minimal Distance operator. In contrast to
the comparisonoperator, the minimum distanceoperator is directed. It
operates in two modes: mandatory (computationally a join) and non-
mandatory (left-outer join), which are symbolizedby a solid and a broken
line, respectively. In both cases,the result is a pair of particles (X,Y).
The user can de�ne a distance threshold for all particles in X that are
further away from Y to be �ltered out. In this threshold, the userde�nes
the limits within which the result of the distance function is valid, and
the result is not �ltered out. The �rst mode (mandatory) meansthat all
particles in A are matched to the nearestparticle in B, and the pairs of
particles are returned. All particles in A which do not �nd a matching
partner in B are �ltered out. The secondmode (non-mandatory) is the
sameas the �rst except that particles from A not �nding a partner in B
are retained, i.e. theseparticles are paired with a empty value.

Finally, our running exampleof Fig.8.1 summarizesthe description of
our languageoperatorsfor this step. We beginon the right-hand sidewith
extracting all � + and � � particles from the events of the third run. With
the help of a transformation operator (T1), we reconstruct K

0
particles.

Another transformation operator (T2) helpsus to �nd D + particles. One
condition operator was inserted which contains the condition expression
that guaranteesthat � + and � � have the samemass.A minimal distance
operator is usedto selectthe PV (primary vertex in physicsjargon), that
is closerto the computed D + particle. If none exists, the decay chain is
discarded.Finally, an aggregationoperation �lters out the particles with
the maximal energylevel for each event.

For the analysis, it might be interesting to get objects that are refer-
encedby someparticles,or vertexes,selectedin the decay (e.g. Particl e !
M CParticl e). It is even possiblethat the selectionof a given particle, or
vertex, is conditioned to the existenceof the object it is referring to.

We will use: � , to mean that the particle, or vertex, is selected
and alsothe referencedobject if this last oneexists. The other possibility
is to use : : : , to mean that the particle, or vertex, will be selectedif
and only if the corresponding referencedobject exists.

The di�erent operators' signaturecan be consultedin Fig.8.8.
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Selection
head=path
pred f Eventg ! f Decayg

Transformation

head
pr ed f Decayg � � � � � f Decayg ! f Decayg

Transformation Result
head
pred f Decayg ! f Decayg

Aggregation

2 f unc
pred f Decayg ! f Decayg

func is the aggregator function

Comparison
� pred f Decayg � f Decayg ! f Decayg

Minimal distance

� f unc
pred f Decayg � f Decayg ! f Decayg

func is the minimal distance function

Figure 8.8: Signatureof PHEASANT Operators in the decay description
step.

Selecting the Result

1D 2D 3D # ?

Figure 8.9: Speci�cation of the result set:1D, 2D, 3D, Value result and
operator omission

Last but not least, we have to describe how to visualize the result of
the query as the fourth step. We provide four di�erent operators for the
description of the result (see Fig.8.9 for the notation, and Fig.8.10 for
the corresponding signatures): three operators to create one-, two-, and
three-dimensionalhistograms,and oneoperator to output numeric values.
Theseoperatorswill basicallyapply a reduction on a certain user-speci�ed
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list of attributes over the decays that resulted from the previousstep.
In caseof the histogramsthey simply represent a resulting setof tuples

to which the framework should visually present its result in the shape of
a histogram. A grouping criteria, alsouser-de�ned,can be used.

In the caseof the numeric value operator, a user-de�ned aggregation
function is speci�ed to get a single result value. In caseof absenceof a
result operator(in this case,we will represent it textually by ? ), the result
can be usedto feedsomeother analysisframeworks, external to our own
one. In our running example,a 1D histogram is requestedasoutput from
the query result with the list of attributes f D + :massg.

Result 1D
1Dhead f Decayg ! H istogr am

Result 2D
2Dhead f Decayg ! H istogr am

Result 3D
3Dhead f Decayg ! H istogr am

Result Number
# head f Decayg ! B asic Type

Omission

? f Decayg ! f Decayg

Figure 8.10: Signatureof PHEASANT's Result Operators
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8.2.4 Grammar

� QC ollection ::= R j ?
<< R >> ::=

<< R >> � ! U

j << R >> � ! U

j << R >> � ! \ � ! R

<< U >> ::= << U >>  � R

<< U>> ::= << U>>  � R

U ::= U � ! U

� QE vent ::= j?

� QD ecay ::= j?

Connectable ::= j
<< >> ::=  �  � << >>

::=  � << >>
j  � << >>

<< >> ::= << >>  �
<< >> ::=

<< >> � Ref erence

j << >> : : : Ref erence

Connectable ::=
j Connectable �� << Connectable >>
j Connectable � : : : << Connectable >>
j Connectable � ! 2

<< Connectable >> << Connectable >> ::=
<< Connectable >> � � << Connectable >>

� QResul t ::= 1D j 2D j 3D j # j ?

Figure 8.11: Context-sensitive graph grammar

In order to proceedwith the de�nition of the syntax of our language,
we have to describe how symbols may be formed into valid phrasesof the
language.
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Comparingour diagrammaticlanguageoperatorswith graphsandedges,
we make useof a graph grammar to de�ne our visual query language(see
Fig.8.11). This grammar is context-sensitive since it allows the usageof
terminals and non-terminalsin the left-hand side,leadingto left and right
graphsof a production to have an arbitrary number of nodesand edges.
The left-hand side represents part of the graph structure that is going to
be extendedin the right-hand side.

This grammarnotation, however beingusefulfor the implementation of
the graphical parser, is not convenient for semantic description purposes.
The graph structure leadsto complexalgorithms to interpret them. This
way, we must describe the syntax notation making use of a BNF like
grammar,which is represented inherently by a tree structure, the Abstract
Syntax Tree (AST). This meansthat we have to describe the syntax at a
higher abstraction level. In practice, this implies to deal with the concept
of comparisonoperators that are the elements that closethe DAGs. We
break the structure by decouplingthem from the DAG, (which becomes
a tree). Thesecomparisons(predicates)are going to be interpreted later
by the semantics mechanism.
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� ::= aQCollectionb QEvent aQDecayb aQResultb

a QCollection b ::= ?
j R

j a CollR � ! CCOP b  � CollR a

j a CollR 1� ! NCOP b 2 � CollR a

CCOP ::= U

j U

NCOP ::= \

a QEvent b ::=

a QDecay b ::= Comparisons Decay
j Comparisons a Decay � ! b

j a Decay � : : : 
 b

j a Decay �� 
 b

Comparisons::= Comparison Comparisons
j?

Comparison::= Connectable� � Connectable
Connectable::= j a Decay b ::= SelObject j a Tree

a SelObject b ::=
j b : : : a

j b � a

a Tree b ::= SelObject
j a Vertex � ! b

a Vertex b ::= a( Tree � ! ) �
b

QResult ::= 1D j 2D j 3D j # j ?

Figure 8.12: PHEASANT's BNF-lik e grammar
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PHEASANT QL's grammar consists of four parts < � ; N; P; S >
where:

� � is the �nite set of terminal symbols, the alphabet of the language,
that are assembled to make up the sentencesof the language. We
decided to use the symbols of the languageitself as terminals in
the grammar, so there is no problem to recognizethe components
introducedin the last section.

� N is a �nite set of nonterminal symbols or syntactic categories,each
of which represents somecollection of subphrasesof the sentences.
In our description, non-terminals have a grayish background, while
for the terminals the regular background is used.

� P are the production rules stated in Fig.8.12. They are represented
as LH S ::= RH S whereproductions with the sameLHS (left hand
side) separatethe di�erent RHSs(right-hand sides)by j. Both left
and right sidesare de�ned in terms of terminal symbols and nonter-
minals.

� S is the start symbol � or null graph.

Let us give someextra explanatory notes. In our production rules, we
de�ne a and b asconnectionpoints to the rest of the graph, and they are
usedto keepthe graph orientation after applying the rule (which means
that the data 
o w goesfrom a to b). Whenever the orientation is obvious,
we will not usethesecharactersfor readability purposes.

Associated with each operator is someadditional data, like attribute
lists and condition lists. During query construction, when using the user
interface, this information is hidden most of the time. Therefore, we
describe this hidden data associated with each operator with the symbol
::/ (seeFig.8.13).

Furthermore, we distinguish between two di�erent collection types:
run collectionsand event collections. When no collection operators are
given in a query, it considersall available data. If a run collection op-
erator is given without an event, only data from the runs that match
the selected�lter conditions speci�ed in that operator will be considered.
We can further restrict this by additionally supplying a description of an
event collection operator. Then only a subsetof the events of the chosen
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runs selectedby the run collection operator will be taken into account.
When specifying an event collection operator without specifying any run
collection operator, we regard the relevant events from all runs .

When connectingcollection operators via set operators, the grammar
di�erentiates between commutativ e operators, CCOP ([ , \ ), and non-
commutativ e operators, NCOP (n).

The languagehas been designedconsideringthe need of the user to
extend the expressions,conditions and transformation functions with his
own ones(otherwise, it would be very restrictive). We will make use of
the terms UDF[68], which stands for set of user-de�ned functions, the
corresponding subsetsare: UDSFs(user de�ned scalarfunctions with the
signature: F loat � � � � � F loat ! F loat); UDAFs (user-de�ned aggregate
functionswith the signature: f F loatg ! F loat), andUDTFs (userde�ned
transform functions Decay� � � � � Decay ! Decay). Someexpressions
and conditions are composedusingUDSFs. Userscan integrate their own
aggregationfunctions into the system(it currently provides a max- and
min-function UDAF) into an aggregationoperator. To connectselection
objects via a transformation operator, the usercan alsosupply his or her
own transformation function (usually a function to reconstruct vertices
UDTF).

R ::/ CollectionName ConditionList
::/ ConditionList

1D ::/ Attribute
2D ::/ Attribute Attribute
3D ::/ Attribute Attribute Attribute
# ::/ Attribute AggFunction

::/ Attribute AggFunction

::/ AttributeList ConditionList UDTF
::/ AttributeList ConditionList
::/ AttributeList ConditionList

� ::/ expr Condition

Figure 8.13: Terminal de�nitions
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AttributeList ::= Attribute �

Attribute ::= ( Label, Type )
ConditionList ::= Condition �

Condition ::= expr CompOP expr

expr ::= expr ArithOp expr j Ar j UDSF ( ArList )

ArList ::= Ar �

Ar ::= Constant j Attribute
Constant ::= IntegerConstant j RealConstant j

StringConstant

CompOP::= > j < j > = j < = j = j <>

UDTF ::= StringConstant

UDSF ::= StringConstant

UDAF ::= StringConstant

ArithOP ::= + j � j � jn
AggFunction ::= UDAF j Max j Min

IntegerConstant ::= [ sign][ digit ]+

RealConstant ::= [ sign][ digit ]� .[ digit ]�

StringConstant ::= ValueReferencej MemberReference

ValueReference::= letter [ letter j digit ]�

MemberReference::= letter [ letter j digit ]� .[ letter j digit ]�

Digit ::= 0j1j2j3j4j5j6j7j8j9

sign ::= + j�

letter ::= Lowercasej Uppercase

Lowercase ::= ajbjcj:::jz
Uppercase ::= AjB jCj:::jZ

Figure 8.14: Grammar of the textual elements of PHEASANT QL

8.3 Semantics

The next step after de�ning the abstract syntax is the de�nition of the
formal semantics. The normal approachesare:

� Translational Semantics - The semantics is given by de�ning a map-
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ping to modelsof a simpler language,which is better understood.

� OperationalSemantics - Expressesthe semantics of a modelling tech-
nique by giving a mechanism that allows to determine the e�ect of
any model speci�ed in the technique. An operational semantics for a
particular programminglanguagedescribeshow any particular valid
programin the languageis interpreted assequencesof computational
steps. Thesesequencesthen are the meaningof the program.

� Denotational Semantics - The syntactic constructs of a language
are mapped onto constructs in another languagewith a well-de�ned
meaning. The target is a mathematical domain and not another
modelling technique.

� Axiomatic Semantics - Treatsa model like a logical theory, doesnot
center on what the model means,but on what can be proven about
it.

In our case,we want to de�ne our languageby meansof algebraicop-
erators that are very well understood and deeply studied in the �eld of
databaseresearch. This way, we want to take advantage of the accumu-
lated knowledgein this area. In consequence,we �nd it adequateto make
useof the translational semantics, by making a syntax-to-syntax mapping
of the languageinto the algebraicoperators of the target object.

8.3.1 The Target Language - In termediate Algebra
Op erators

We have designedour languagemaking use of a syntax mapping to the
algebrawherethe semantics is described here.
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T yp e System

Beforewe start with the explanation of the algebraicoperators, we intro-
ducethe de�nitions and precisenotations which are useful for a clear and
unambiguousinterpretation of theseoperators.

De�nition 1 (Basic types).
The primitiv e typesare:

� F loat (
oating point number)

� Bool (value \true" or \false")

� I nteger

� Str ing (sequenceof characters)

De�nition 2 (Type constructor).
For the bulk type set, (unorderedcollection of elements of type � ), we

write: f � g

De�nition 3 (Type variable).
We de�ne the notation for a type variable to be: � 1; :::; � n

De�nition 4 (Tuple type constructor).
A tuple is a mapping from a set of attributes to values of a certain

type. We cande�ne tuple typesas[a1 : � 1; :::; an : � n ] wherefor 1 � i � n:

� � i are types

� ai are attribute names

� ai 6= aj

The setof attributes de�ned for a tuple t is written asA(� ). All the tuples
of type � have the sameattributes A(� ).

Nested tuples are possible. A value of an attribute may be a set of
tuples.

In order to represent a tuple of type� 0that contains the sameattributes
as � = [a1 : � 1; :::an : � n ] except for the attribute aj ; 1 � j � n we use
� =aj .

The concatenationof tuples and functions is denotedby � .
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De�nition 5 (Relation types).
A relation is a setof tupleswhich areall of the sametype[a1 : � 1; :::; an :

� n ], and we represent the type of the relation by f [a1 : � 1; :::; an : � n ]g.

De�nition 6 (Structural sub-typing).
Sub-typing is the notion of inclusion betweentypes. It is represented

by A � B , A is a subtype of B.
� � � 0 ) f � g � f � 0g, meaningthat if � is a subtype of � 0 then the set

type f � g is subtype of f � g0. Further: [a1 : � 1; :::; an : � n ] � [a1 : � 0
1; :::; ak :

� 0
k ] if for all 0 � k � n:� 1 � � 0

1

De�nition 6 (Freevariables).
F (e) is de�ned as the set of free variablesof an expressione.

De�nition 7 (Predicates).
For an expressionpred possibly containing free variables,and a tuple

t, we denote by pred(� ) the result of evaluating pred where bindings of
freevariablesare taken from attribute bindings provided by � . F (pred) �
A (� ).

De�nition 8 (Elements of a tuple).
If b is a tuple of type [a1 : � 1:::an : � n ] then the type of the attribute b:ai

is � i , with 0 < i � n.

De�nition 9 (Mapping function).

A function mappinga tuple to a newtuple, possiblyof a di�erent type,
is alsodenotedby the symbols head.

De�nition 9 (Unique attribute namesgenerator).
� : ! Str ing is a function that generatesa unique string, di�erent from
all others generatedbefore. Thesestrings are used as labels in someof
the algebraicoperators de�ned in the following section.

De�nition 10 (Type histogram).
We de�ne the type histogram to be:

� � H 1 = f [r 1 : F loat]g

� � H 2 = f [r 1 : F loat; r 2 : F loat]g



98 CHAPTER 8. QUERY LANGUA GE - PHEASANT QL

� � H 3 = f [r 1 : F loat; r 2 : F loat; r 3 : F loat]g

Sometimeswe make useof the notation < a1; :::; an > , which means
A([a1 : � 1; :::; an : � n ]).

Schema

For the examplesusedto explain our operators,we are going to make use
of the following schema:

� exp col =

f [id : I nteger;

event : f Event g;

eventsType: I nteger;

r esponsible : str ing]g

� runcol =

f [id : I nteger;

event : f Event g;

star t : I nteger;

end : I nteger;

sequence: I nteger]g

� mypriv atecol =

f [id : I nteger;

event : f Event g;

Date : Str ing;

queryN umber : I nteger]g

� Event =

[id : I nteger;

bx : integer;

particl e : f Particle g;

vertex : f Vertex g]
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� Particle : [id : I nteger;

mass : F loat;

Px : F loat;

Py : F loat;

Pz : F loat;

Energy : F loat;

M CParticl e : f MCP article g;

:::]

� Vertex :

[id : I nteger;

x : F Loat;

y : F loat;

z : F loat;

M CVertex : f MCV ertex g;

outgoingParticl e : Particle ;

ingoingParticl e : f Particle g]

� MCP article : [id : I nteger;

mass : F loat;

Px : F loat;

Py : F loat;

Pz : F loat;

Energy : F loat;

:::]

� MCV ertex :

[id : I nteger;

x : F Loat;

y : F loat;

z : F loat;

:::]
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As stated before in chapter 3, some of the entit y attributes might
changeslightly from experiment to experiment.

Algebraic Op erators

Having the type systemde�ned in the previoussection,we are now ready
to de�ne our algebraic operators. In Fig.8.15, we give the type signa-
ture for each operator. The semantic of the operators is summarizedin
Fig.8.16. Informally, we can de�ne our operators as follows:

� selection � pr ed(X ) - Selectsall elements of X that satisfy the pred-
icate pred.

X id mass energy
1 1.5 4
2 1.8 5

[� mass> 1:5(X )] id mass energy
2 1.8 5

� join X
=

pr edY - Joinsthe collectionX and Y usingthe join predicate
pred.

X id mass energy
1 1.5 4
2 1.8 5
3 1.0 6

Y id mass energy
5 1.3 4
6 1.4 5
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[X
=

pr ed Y] Tuple1 Tuple2

id mass energy id mass energy
1 1.5 4 5 1.3 4
1 1.5 4 6 1.4 5
2 1.8 5 5 1.3 4
2 1.8 5 6 1.4 5

Where pred= tuple1:mass > 1:0 and tuple2:mass > 1:0.

� unnest � path
pr ed(X ) - returns the collection of all pairs (x,y) for each

x 2 X and for each y 2 x:path that satisfy the predicatepred(x,y)

X Event
id Particle

x y z ...
1 1 1 1 ...

2 2 2 ...
3 3 3 ...

2 2 2 2 ...
1 1 1 ...

[� \ P ar ticl e1:E vent:P ar ticl e00

tr ue (X )] Event Particle1
id ... x y z ...
1 ... 1 1 1 ...
1 ... 2 2 2 ...
1 ... 3 3 3 ...
2 ... 2 2 2 ...
2 ... 1 1 1 ...

� reduce � � =head
pr ed (X ) - generalizesthe relational projection operator,

collects the valueshead(x) for all x 2 X that satisfy pred(x) using
the accumulator � , which can be a set, (

S
), or an aggregatefunc-

tion like f max; min; sum; avgg .

X id mass energy
1 1.5 4
2 1.8 5
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[� [ =<id>
tr ue (X )] id

1
2

� outer-join X > pr ed Y - is the left outer join betweenX and Y using
the join predicate pred. If the range variable y of Y is empty or
there are no elements that can be joined with the range variable x
of X, then y becomesa null and the result is the pair < x; nul l > .

X id mass energy
1 1.5 4
2 1.8 5
3 1.0 6

Y id mass energy
5 1.3 4
6 1.4 5

[X > pr ed Y] Tuple1 Tuple2

id mass energy id mass energy
1 1.5 4 5 1.3 4
2 1.8 6 5 1.4 5
3 1.8 5

Where pred= \ tuple1:energy = tuple2:energy00.

� outer-unnest =� path
pr ed - Similar to the unnest,but if x.path is empty

for x 2 X or pred(x,y) is false for all y 2 x:path, then the pair (x,
NULL) is given as output.

X Event
id Particle

x y z ...
1 1 1 1 ...

2 2 2 ...
3 3 3 ...

2 2 2 2 ...
1 1 1 ...
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[=� \ P ar ticl e1:E vent:P ar ticl e00

\ E vent:P ar ticl e:x> 200 (X )] Event Particle1
id ... x y z ...
1 ... 3 3 3 ...
2 ...

� nest � � =head=gr oup
pr ed (X ) - Imagesof elements x and y of a given col-

lection X, (head(x) and head(y) ), are grouped together in the same
group if their evaluation value of the group-by-function group is
equal, (group(x) = group(y)). After grouping, the accumulator � ,
where either � 2 f M ax; M ing or � 2 f max; min; sum; count; :::g,
will reduceeach group. The next section will describe thoroughly
theseaggregatorfunctions.

The result of evaluating the accumulator function can be divided
into two groups:

For � 2 f max; min; sum; count; :::g, in order to feed directly
the result operators. An examplecould be:

X Event Particle1 Particle2
id ... x y z ... x y z ...
1 ... 0 0 0 ... 1 1 1 ...
1 ... 1 1 1 ... 2 2 2 ...
1 ... 0 0 0 ... 3 3 3 ...
2 ... 0 0 0 ... 2 2 2 ...
2 ... 0 0 0 ... 1 1 1 ...

[� max= [value:00P ar ticl e1:x+ P ar ticl e2:x 00]>=E vent:id
tr ue (X )] max

3
2

For � 2 f M ax; M ing. An examplecould be:

[� M ax=<v ale;tupl e>=E vent:id
tr ue (X )] Event Particle1 Particle2

id ... x y z ... x y z ...
1 ... 1 1 1 ... 2 2 2 ...
2 ... 0 0 0 ... 2 2 2 ...
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Where< value;tuple > = [value :00Particl e1:x+ Particl e2:x00; tuple :
X ].

� union = [ (X ; Y) - Returns all tuples that occur in either X and Y, if
A (� X ) = A (� Y ), with � X and � Y being type variablesof respectively
X and Y.

� in tersection = \ (X ; Y) - Returns all tuples that occur both in X
and in Y, if A (� X ) = A (� Y ), with � X and � Y being type variablesof
respectively X and Y.

� di�erence = n(X ; Y) - Returns all tuples that occur in X but do not
occur in Y, if A (� X ) = A (� Y ), with � X and � Y being type variables
of respectively X and Y.
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Selection f � g ! f � g
� pred pred : � ! Bool; F (pred) � A (� )

� � []
Join f � 1g � f � 2g ! f [tupl e1 : � 1; tupl e2 : � 2]g

?

pred pred : � 1; � 2 ! Bool; F (pred) � A (� 1) [ A (� 2)
� i � []

Unnesting f � g ! f � 0g

� name:path
pred pred : � ; � 0 ! fB oolg

if � = [a1 : � 1; :::; an : � n ; path : � 0]; 0 < n; � 0 �
� 0 = [a1 : � 1; :::; an : � n ] � [name : � 0]
name = � ()

Reduce if � = [ : f � 1g ! f � 2g

� � =head
pred if � = max; min; sum; :::: f � 1g ! � 2

head : � 1 ! � 2

pred : � 1 ! Bool; F (pred) � A (� 1) [ A (� 2)
Outer-Join f � 1g � f � 2g ! f [tupl e1 : � 1; tupl e2 : � 2]g

@

pred pred : � 1; � 2 ! Bool; F (pred) � A (� 1) [ A (� 2)
� i � []

Outer-Unnest f � g ! f � 0g

=� name:path
pred pred : � ; � 0 ! Bool

if � = [a1 : � 1; :::; an : � n ; path : � 0]; 0 < n; : (� 0 � [])
� 0 = [a1 : � 1; :::; an : � n ] � [name : � 0]
name = � ()

nest if � 2 f max; min; sum; avg:::g
f � g ! fF loatg

� � =head=group
pred head = �� :[value : F loat]

if � 2 f M ax; M in g
f � g ! f � g
head = �� :[value : F loat; tupl e : � ]

pred : � ! Bool; F (pred) � A (� )
Union
[ f � g � f � g ! f � g

Intersection
\ f � g � f � g ! f � g

Di�erence

n f � g � f � g ! f � g

Figure 8.15: Type signatureof our algebraicoperators
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Selection Selectsqualifying tuples according to predicate pred:
� � pr ed(e) := f t jt  e;pred(t)g

Join Connectsall tuples in e1 to all in e2 and selects
tuples according to pred:

?

e1 A pr ed e2 := f [tupl e1 : t1; tupl e2 : t2]jt1  e1; t2  e2; pred(t1; t2)g
Unnesting Selectsa tuple and its nestedattribute de�ned in path,

according to to predicate pred:
� � name:path

pr ed (e) := f (t1; t2)jt1  e1; t2  path(t1); pred(t1; t2)g
Reduce Collects valuesde�ned in head(t), according to pred,

in the aggregator � :

� � � =head
pr ed (e) := �f head(t)jt  e;pred(t)g

Outer-Join Sameas Join, but returns the tuple [tupl e11 : t; tupl e2 : N ULL ]
if e2 is empty or there are no elements to join to t 2 e1:

@

e1 B pr ed e2 := f [tupl e1 : t1; tupl e2 : t2]j
t1  e1;
t2  if ^ f : pred(t1; x) jx  e2g

then nul l
else f xjx  e2; pred(t1; x)gg

Outer-Unnest Sameas Unnest, but returns the tuple t � [name = N ULL ]
if t:path is empty:

=� =� path
pr ed(e) := f (t1; t2)j

t1  e;
t2  

if ^ f: pred(t1; x)jx  path(t1)g
then nul l
else f xjx  path(e); pred(t1; x)gg

nest � � =head=gr oup
pr ed (X ) := f�f head(w)gjw  e;pred(w); v = gr oup(w)gj

� v  � gr oup(X )g
� gr oup(X ) = f gr oup(t)jt  X g, with duplicate elements removed.

Union returns the set of tuples that occur in both sets:
[ [ (e1; e2) := f xjx 2 e1 _ x 2 e2g

Intersection Returns the set of common tuples:
\ \ (e1; e2) := f xjx 2 e1 ^ x 2 e2g

Di�erence Returns the set of tuples that return just in the �rst set:

n n(e1; e2) := f xjx 2 e1 ^ : (x 2 e2)g

Figure 8.16: Operators of the target algebra
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Aggregation Functions

Each of the functions in the set aggf unc 2 f max; min; sum; count; :::g
has the signature: aggf unc : fF loatg ! F loat. The user is supposedto
write more user-de�ned aggregatefunctions if necessary, using the same
signature. The de�nition of the aggf uncs can be speci�ed as follows:

� count(x) = + f 1je  xg

� sum(x) = + f eje  xg

� max : f [value : F loat]g ! F loat

� max(e) := f xjx  e : 8y 2 e;mx(x; y) = x:valueg

where:

mx : F loat � F loat ! F loat

mx(a;b) =
�

a if a > = b
b else

� min : f [value : F loatg] ! F loat

� min (e) := f xjx  e : 8y 2 e;mn(x:value;y:value) = x:valueg

where:

mn : F loat � F loat ! F loat

mn(a;b) =
�

a if a < = b
b else

An exampleof the usageof max is:

X id mass energy
1 1.5 4
2 1.8 5

� max=<X :id>
tr ue (X ) X.id

2
Certain PHEASANT operators like the Aggregator and Minimal dis-

tance need to de�ne a special set of aggregatefunctions. Given a set
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of tuples [value : F loat; tuple : � ], we need two operators to return
the tuple with maximum/minim um value. We de�ne these functions as
agg 2 f M ax; M ing. Max is speci�ed as follows:

� M x : � � � ! �

� � = [value : F loat; tuple : � 0]

� M x([value : f 1; tuple : t1]; [value : f 2; tuple : t2]) :=�
[value : f 1; tuple : t1] if f 1 > = f 2

[value : f 2; tuple : t2] else

� M ax : f � 1g ! � 2

� � 1 = [value : F loat; tuple : � ] and � 2 = �

� M ax(e) := f t1j < v1; t1 >  e;8 < v2; t2 > 2 e : M x(< v1; t1 >; <
v2; t2 > ) = < v1; t1 > g

For example:

X Event Particle1 Particle2
id ... x y z ... x y z ...
1 ... 0 0 0 ... 1 1 1 ...
1 ... 1 1 1 ... 2 2 2 ...
1 ... 0 0 0 ... 3 3 3 ...
2 ... 0 0 0 ... 2 2 2 ...
2 ... 0 0 0 ... 1 1 1 ...

�

(
M ax=
< 00 P ar ticle 1:x + P ar ticle 2:x 00; < X >> =
X :E v ent:id

tr ue (X) value tuple
Event Particle1 Particle2
id ... x y z ... x y z ...

3 1 ... 1 1 1 ... 2 2 2 ...

2 2 ... 0 0 0 ... 2 2 2 ...

The oppositeoperation Min returns the corresponding tuple valuethat
pairs with the minimal value comparedagainstthe wholeset. It is de�ned
in a similar way asMax:
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� M n : < F loat � � > ! < F loat � � >

� M n(< f 1; t1 >; < f 2; t2 > ) :=
�

< f 1; t1 > if f 1 < = f 2

< f 2; t2 > else

� M in : f < F loat � tuple > g ! tuple

� M in (e) := f tj < v1; t1 >  e;8 < v2; t2 > 2 e : M n(< v1; t1 >; <
v2; t2 > ) = < v1; t1 > g

We can now exercisea formal denotation of thesealgebraicoperators
as it can be seenin Fig.8.16.

Op erator Trees

Textual algebraic forms using the operators just described tend to be
better understood if we represent them asoperator trees. This conceptis
easyto graspif we make useof the conceptof a streamof tuples from the
leavesto the root of the tree.

As a helpful visual feature, we represent on the right side of the root
of the tree the A(� ), surroundedby <> , of the tuples that are resulting
from the data stream. On the right side of the Unnest operator and the
Collection, (leaf), we represent the new unnestedattributes.

In the �rst case, the variable represent the new unnested attribute
extracted, containing its type. In the secondcase,the variable rangesover
the collection, meaning that the variable is of the type of the collection
instances.

A simple examplecan be visualized in Fig.8.17. At the leaf, we are
generatinga stream of tuples of type [student : Student]. The Student
collection is beingrangedby the variable student. The streamis accepted
by the Unnest operator that will output the stream of tuples of type
[student : Student; sup : Supervisor ], meaningthat in a tuple we match
each student with each of his supervisors. Finally, with the streamresult-
ing from the Unnestoperator, the Reduceoperator acceptseach tuple and
evaluates the expression[phd : stu:name;prof : sup:name], building the
set of tuples with the structure < phd;prof > .

We will make useof this visual conceptin the following sectionto help
explaining the semantics of our language.
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� [ =� ([stu;sup ]):[phd:stu:name;pr of :sup:name ]
� ([stu;sup ]):(tr ue)

< phd;prof >

� sup:[stu:S uper visor ]
� ([stu ]) :(tr ue)

sup

Student

stu

Figure 8.17: Example of an algebraicform represented asa tree.
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8.3.2 Language Description

As de�ned by the grammar, the user's query is described by four main
components:

Query = QResul t QD ecay QE vent QCollection

We are going to detail the mapping for each component and its opera-
tors as well as the necessarysymbols for the formalization. We structure
our explanation for each operator in the following way: �rst the conver-
sion rules, then an informal explanation followed by an example and a
depiction of the corresponding plan tree.

Mapping

Visual Syntax
Semantics (Algebra)

[[Query]]

Query Plan

Figure 8.18: Map operator - Translatesthe visual query into our algebra.

We de�ne the map operator [[Q]] as the translation of the query Q (a
statement composedby abstract syntax notation operators) into the cor-
responding algebraicnotation.

De�nition 1 (PHEASANT QL mapping). A map operator [[q]] is a func-
tion that maps the query q speci�ed in PHEASANT QL syntax into a
corresponding expressionof the intermediate Algebra.

De�nition 2 (PHEASANT QL sub-mapping). The map operator is a
composition of four sub-mapoperators.

� [[QCollection ]]C , mapsthe PHEASANT collectionvisual query, QCollection ,
into the corresponding Algebra.
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� [[QE vent ]]E , maps the PHEASANT Event �lter visual query QE vent .
The resulting algebraicform dependson the result of [[QCollection ]]C
evaluation.

� [[QD ecay]]D , maps the PHEASANT Decay visual query QD ecay. The
resulting algebraicform is dependent on the result of [[QE vent ]]E eval-
uation.

� [[QResul t ]]R , mapsthe PHEASANT Result query QResul t . The result-
ing algebraicform is dependent on the result of [[QD ecay]]D evaluation.

A query in PHEASANT QL can be interpreted (as given by the gram-
mar) as four subqueriesthat correspond to the four major query steps:
Result, Decay, Event and Collection. This meansthat the �rst stepof the
mapping operation will be described by the following rule:

[[Query]] = [[QResul t QD ecay QE vent QCollection ]] =
= [[QResul t ]]R ([[QD ecay]]D ([[QE vent ]]E ([[QCollection ]]C ))) (Q1)

Figure 8.19: Translation rules from the AST to query Plan - Collection-
Event materialization

The sub-query[[QCollection ]]C is a sub-planof [[QE vent ]]E which in turn is
a sub-queryof [[QD ecay]]D . Finally, [[QD ecay]]D is a sub-planof [[QResul t ]]R .
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Symbol De�nition
hh� ii w Notation usedwhen needed,

to make explicit the attributes of the tuples
w = A(� )

[H j T] list with a headH and tail T
[H j ; ] list with oneelement
; empty list
? empty or absenceof operator
lattr ib list of attributes, [a1 : � 1; :::; an : � n ]
name label for the attribute, name = � ()
collect Collection name
f dist() arithmetic distancecalculation function
expr(� ) arithmetic expressionwherethe

free variables2 A(� ) we may usethe notation
expr(fdist) to meanthat the expression

usesan fdist function
udtf function to generatea tuple

accordingto a pre-de�ned type structure
(useful) for the de�nition of the Transformer

operator

Figure 8.20: Usedsymbols
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The Collection Op erators

[[? ]]C = Event (C0)

[[ R
collect
pr ed ]]C = hh� [ =� (<c;ev t> ):<ev t>

� (<c;ev t> ):(tr ue) (� evt:c:event
pr ed (collect)) ii [evt ] (C1)

[[X [ Y]]C = [ ([[X ]]C ; [[Y ]]C ) (C2)

[[X \ Y]]C = \ ([[X ]]C ; [[Y ]]C ) (C3)

[[X n Y]]C = n([[X ]]C ; [[Y ]]C ) (C4)

Figure 8.21: Translation rules from the AST to query Plan Collection-
Event materialization

The �rst rule C0 says that in the caseof any collection operator in the
description of the query, the consideredcollection sourceof events will be
the Event collection.

As it is explicit in the C1, the collection selection symbol can be
expressedby intermediate algebraic operators. The stream of tuples c
f [c : collect]g, wherecollect is the nameof the collection of requestedtu-
ples,and existing in the Collection Catalog. The unnestoperator, in turn,
acceptsthe stream of tuples and constructs a stream f [c : collect;evt :
Event]g, connectingeach collect with one of its events. The reduceop-
erator will evaluate the expressionhead � (< c;evt > ): < evt > for every
input element and constructsa set.

In order to make the manipulation of these collections more 
exible
by meansof set union(C2), intersection (C3) and di�erence (C4) we have
set mapping rules for theseoperators. Sincethe operators are the same
and the mapping is direct, we will refrain ourselvesfrom explaining them
further.

Wewill now present an examplethat combinessomeof theseoperators
and their corresponding mapping into to the algebra.

A short exampleof a possiblequery mapping could be:
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Example 1:

[[ R
expCol
tr ue n ( R

r unC ol
tr ue \ R

my P r iv ateC ol
tr ue )]]C=

(C4) = n([[ R
expCol
tr ue ]]C , ([[ R

r unC ol
tr ue \ R

my P r iv ateC ol
tr ue ]]C ))

(C2) = n([[ R
expCol
tr ue ]]C ; (\ ( [[ R

r unC ol
tr ue ]]C , [[ R

my P r iv ateC ol
tr ue ]]C ))

(C1) = n(hh� [ =� (<c;ev t> ):<ev t>
� (<c;ev t> ):(tr ue) (� evt:[c:event ]

(tr ue) (expCol)) ii [evt ];

(\ ( hh� [ =� (<c;ev t> ):<ev t>
� (<c;ev t> ):(tr ue) (� evt:[c:event ])

(tr ue) (r unCol)) ii [evt ],

hh� [ =� (<c;ev t> ):<ev t>
� (<c;ev t> ):(tr ue) (� evt:[c:event ])

(tr ue) (
myPr ivateCol)) ii [evt ]

We assumethat expColarecollectionswith somespecialpurposesde�ned
by the systemexperts, runCol are collectionsof events organizedin runs
and �nally myPrivate are the user'spersonalcollectionsof selectedevents
(likely during previous analysis phases). In this example, we want to
selectthe collection of events contained by expcol collection tuples, with
the exceptionof the set of events that are part of the intersectionbetween
runCol collection tuples and myPrivate collection tuples.
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n

< evt >

� [ =� (c;evt):<ev t>
� (<c;ev t> ):(tr ue)

� event :[c:event ]
(tr ue)

evt

expCol

c

\

� [ =� (<c;ev t> ):<ev t>
� (<c;ev t> ):(tr ue)

� evt:[c:event ]
(tr ue)

evt

runCol

c

� [ =� (<c;ev t> ):<ev t>
� (<c;ev t> ):(tr ue)

� evt:[c:event ]
(tr ue)

evt

myPr ivateCol

c

Figure 8.22: Mapping result of collection query example
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The Event Speci�cation Op erator

[[? ]]E = hh[[QCollection ]]C ii [evt ] (E0)

[[ pr ed]]E = hh� � (<ev t> ):(pr ed) ([[QCollection ]]C )ii [evt ] (E1)

Figure 8.23: Mapping the Event speci�cation operator

In casethe Event speci�cation operator is omitted, the result of this
operator will be the resulting set of the evaluation [[QCollection ]]C .

We can explain the semantics for the rule E1 in the following man-
ner: The resulting set of tuples < evt > of the query plan mapped by
[[QCollection ]]C are fed into the Selecionoperator in order to discard the
the tuples that do not validate the predicate speci�ed in pred. Basi-
cally, for each variable evt the � operator constructs a stream of tuples
f < evt : Event > g, whereeach tuple satis�es the condition pred.

Let us assumewe want to �lter out all the events coming from the
query plan that is the result of the �rst mapping step ([[QCollection ]]C ),
with the �lter predicate \ evt:bx = 3", where bx is an attribute of event.
We would make useof our mapping rules like in example2. The result
can be better visualizedin Fig.8.25.

Example 2:

[[ 0evt:bx=3 0]]E =

(E1) = � � (evt):(pr ed(0evt:bx=3 0)) ([[QCollection ]]C )
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� � (<ev t> ):(0evt:bx=3 0)

< evt >

[[QCollection ]]C

evt

Figure 8.24: Mapping result of an exampleof Event Speci�cation
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The Decay Speci�cation Op erators

[[? ]]D = [[QE vent ]]E (D0a )

[[; ]]D = ? (D0b)

[[H jT ]]D = � [ =� (<tupl e1 ;tupl e2> ):([evt :tupl e1 :evt ]� (tupl e1=evt)� (tupl e2 =evt))
� (<tupl e1 ;tupl e2> ):(tr ue) (

[[H ]]D
=

tupl e1 :evt:id = tupl e2 :evt:id [[T ]]D ) (D1)

Figure 8.25: Translation rules for the selectionoperator

The mapping rules D0 presented in 8.25 exist especially to deal with
empty sets. If there is no Decay operator, the consideredresult set will be
the complete input set returned by [[QE vent ]]E , using the query rule D0a .
Rule D0b dealswith an empty list of operators.

The rule D1 is important to deal with the result of several isolated
decays drawn by the user. In fact, the semantics of di�erent unconnected
decays is speci�ed by this rule to be a stream of tuples resulting from the
join operation over the streamsof their individual results.
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The Selection Op erator

[[
 name:path
pr ed=lattr ib]]D =

= hh� [ =� (evt;name ):<ev t;name;l attr ib>
� (evt;name ):(tr ue) (

� name:evt:path
� (<ev t> ):(pr ed) ([[QE vent ]]E ))

ii [evt ;name ;lattrib ] (D2)

Figure 8.26: Translation rules for the selectionoperator

This operator will be de�ned in the algebraicnotation in the following
way: the input will be the set of events (evt) result of the query subplan
[[QE vent ]]E and it will start with a generationof a stream f < evt > g.

Suppose,as in our example3, that the user simply wants to retrieve
from the systemall the particles with positive energyand existing mass.
It is required that the result stream has for each tuple the valuesof the
computation of the squareroot of the sum of the squaredpx, py and pz.
The result of the mapping of this query by using our just de�ned rules
would look like in Fig.8.27.

Example 3:

[[
 my par ticl e:P ar ticl e
0E ner gy> 0 and mass> 00=f p= sqr t(px2+ py2+ pz2);b= mass� 0:1g]]D =

(D2) = hh� [ =� (evt;my par ticl e):<ev t;my par ticl e;p= sqr t(px2 + py2+ pz2);b= mass� 0:1>
� (evt;my par ticl e):(tr ue) (

� my par ticl e:[evt:par ticl e]
� (evt;my par ticl e):(pr ed) ([[QE vent ]]E )) ii [evt ;name ;p ;b ]
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� [ =� (evt;my par ticl e):<ev t;my par ticl e;p= sqr t(px2 + py2+ pz2);b= mass� 0:1>
� (evt;my par ticl e):(tr ue)

< evt; myparticl e;p;b>

� my par ticl e:[evt:P ar ticl e]
� (evt;my par ticl e):(pr ed(0E ner gy> 0 and mass> 00))

myparticle

[[QE vent ]]E

evt

Figure 8.27: Simple Selectionexample
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Transformer

[[ name:?
pr ed=lattr ib ! ! [H jT ]]]D =

hh� [ =� (w0):w0� lattr ib
� (w0):(pr ed) ([[ ! [H jT ]]]w

0

D )ii [w 0;lattrib ] (D3)

[[ ! [H jT ]]]D =
hh� [ =� (<tupl e1 ;tupl e2> ):([evt :tupl e1 :evt ]� (tupl e1=evt)� (tupl e2 =evt))

� (<tupl e1 ;tupl e2> ):(tr ue) (
[[ ! T ]]tuple 1

D
=

\ tupl e1 :evt:id = tupl e2 :evt:id 00 [[H ]]tuple 2
D )

ii [evt ;A (tuple 1 )=evt ;A (tuple 2 )=evt ] (D4)

[[ name:udtf
pr ed=lattr ib ! [H j; ]]]D =

hh� [ =� (w):(w� [name:udtf (w)] � lattr ib)
� (w):pr ed ([[H ]]wD )ii [A (w );name ;A (lattrib )] (D5)

Figure 8.28: Translation rules from the Transformeroperator

The mapping of the description of the transformation operation is de-
�ned mainly by three translation rules. The �rst, D3, is responsible for
starting to map the chain that links the resulting tuples to the transformer
operator and the rest of the decay tuples. The �rst thing is to interpret
the type structure of the tuple that will be the result and leave the rest
of the mapping to the rules D4 and D5. This meansthat a reduction to
the result of the mapping of the pair composedby the transformer oper-
ator and the list of decayed particles is set. The rule D4 is responsible
for recursively mapping the operators in the several branchesof the decay
into joins and D5 stops the recursion in the last element and maps the
transformer operator itself into a reduction.

In Example4, we will transform a decay query. Hereit is described by
two particles (one with positive massand the other negative), that decay
from a vertex (myvertex) the valuesof which are computed by using the
transformation function Transform, if the sum of both massesis greater
than 0.5. The result of applying the transformation rules can be observed
in the query plan of Fig.8.29.
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Example 4:

[[ my ver tex :?
tr ue=fg ! my tr ans:T r ansf orm

0� + :mass+ � � :mass> 0:50=fg !

f
 � + :P ar ticl e
0ener gy> 00=fg ; 
 � � :P ar ticl e

0ener gy< 00=fg g]]D =

(D3) = hh� [ =� (w0):<w 0>
pr ed(w0)( tr ue) ([[

my tr ans:T r ansf orm
0� + :mass+ � � :mass> 0:50=fg !

f
 � + :P ar ticl e
0ener gy> 00=fg ; 
 � � :P ar ticl e

0ener gy< 00=fg g]]w
0

D )

ii [w 0]

(D4) = hh� [ =� (w1 ;w2):<w 1 ;w2>
pr ed(w1 ;w2)( tr ue) (

hh� [evt :tupl e1 :evt ]� (tupl e1=evt)� (tupl e2 =evt)
� (<tupl e1 ;tupl e2> ):tr ue (

[[ my tr ans:T r ansf orm
0� + :mass+ � � :mass> 0:50=fg ! 
 � � :P ar ticl e

0ener gy< 00=fg ]]tuple 1
D

A tupl e1 :evt:id = tupl e2 :evt:id [[
 � + :P ar ticl e
0ener gy> 00=fg ]]tuple 2

D

)ii [evt ;A (tuple 1 =evt );A (tuple 2 =evt )] )
ii [w 0=[ evt ;A (tuple 1 =evt );A (tuple 2 =evt )]]

(D5) = hh� [ =� (w;my tr ans;evt;� + ):<w ;my tr ans;evt;� + >
pr ed(w;my tr ans;evt;� + )( tr ue) (hh

� [evt :tupl e1 :evt ]� (tupl e1=evt)� (tupl e2 =evt)
� (<tupl e1 ;tupl e2> ):tr ue (

hh� [ =� (w):<w ;my tr ans= T r ansf orm>
� (w):pr ed(0� + :mass+ � � :mass> 0:50) ([[


� � :P ar ticl e
0ener gy< 00=fg ]]wD )ii tuple 1 =[ A (w );m ytrans ]

A tupl e1 :evt:id = tupl e2 :evt:id [[
 � + :P ar ticl e
0ener gy> 00=fg ]]tuple 2 =[ evt ;� + ]

D

ii [evt ;A (w =evt );m ytrans ;� + ])
ii [evt ;A (w =evt );m ytrans ;� + ]

(D2) = hh� [ =� (evt;� � ;my tr ans;evt;� + ):<ev t;� � ;my tr ans;evt;� + >
pr ed(evt;� � ;my tr ans;evt;� + )( tr ue) (hh

� [evt :tupl e1 :evt ]� (tupl e1=evt)� (tupl e2 =evt)
� (<tupl e1 ;tupl e2> ):tr ue (

hh� [ =� (evt;� � ;my tr ans;evt;� + ):<ev t;� � ;my tr ans;evt;� + ;my tr ans= T r ansf orm]>
� (evt;� � ;my tr ans;evt;� + ):pr ed(0� + :mass+ � � :mass> 0:50) (

hh� [ =� (evt;� � ):<ev t;� � >
� (evt;� � ):(tr ue) (

� � (evt):[� � :evt:P ar ticl e]
� (evt;� � ):(pr ed(0ener gy< 00)) ([[QE vent ]]E )) ii w =[ evt ;� � ])ii [evt ;� � ;m ytrans ]

A tupl e1 :evt:id = tupl e2 :evt:id hh� [ =� (evt;� + ):<ev t;� + >
� (evt;� + ):(tr ue) (

� � (evt):[� + :evt:P ar ticl e]
� (evt;� + ):(pr ed(0ener gy> 00)) ([[QE vent ]]E )) ii [evt ;� + ]

ii [evt ;� � ;m ytrans ;� + ])
ii [evt ;� � ;m ytrans ;� + ]
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� [ =� (evt;� � ;my tr ans;� + ):<ev t;� � ;my tr ans;� + >
pr ed(evt;� � ;my tr ans;� + )( tr ue)

< evt; � � ; mytr ans; � + >

� [ =� (evt;� � ;� + ):<ev t;� � ;my tr ans;� + ;my tr ans= T r ansf orm>
� (evt;� � ;my tr ans;� + ):pr ed(0� + :mass+ � � :mass> 0:50)

� [ =� (<tupl e1 ;tupl e2> ):([evt :tupl e1 :evt ]� (tupl e1=evt)� (tupl e2 =evt))
� (<tupl e1 ;tupl e2> ):(tr ue)

< evt; � + ; � � >

A tupl e1 :evt:id = tupl e2 :evt:id

< tupl e1; tupl e2 >

� [ =� (evt;� � ):<ev t;� � >
� (evt;� � ):(tr ue)

� � (evt):[� � :evt:P ar ticl e]
� (evt;� � ):(pr ed(0ener gy< 00))

� �

[[QE vent ]]E

evt

� [ =� (evt;� + ):<ev t;� + >
� (evt;� + ):(tr ue)

� � (evt):[� + :evt:P ar ticl e]
� (evt;� + ):(pr ed(0ener gy> 00))

� +

[[QE vent ]]E

evt

Figure 8.29: Example of the mapping of the transformer operator
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Reference Op erator - Path Expressions

[[
 name:path
pr ed=lattr ib[H jT ]]]path

D (Q) = [[[H jT ]]]name
D ([[
 ]name:path

pr ed=lattr ib]D (Q)) (D6)

[[[H jT ]]]path
D (Q) = [[T ]]path

D ([[H ]]path
D Q) (D7)

[[� ! 
 name:?
pr ed=lattr ib[H jT]]]name 0

D (Q) =
[[H jT]]name [[� ! 
 name:?

pr ed=lattr ib]]name 0

D (Q) (D8)

[[� ! 
 name:?
pr ed=lattr ib]]name 0

D (Q) = � name:[name 0:path ])
pr ed (Q) (D9)

[[� ,! 
 name:?
pr ed=lattr ib[H jT]]]name 0

D (Q) =
[[H jT]]name [[� ,! 
 name:?

pr ed=lattr ib]]name 0

D (Q) (D10)

[[� ,! 
 name:?
pr ed=lattr ib]]name 0

D (Q) = =� name:[name 0:path ])
pr ed (Q) (D11)

Figure 8.30: Translation rules for the referencesoperators

In Example 5, we show a mapping which usesboth mandatory and
non-mandatorypath expressions.We want to selectall the particles with
mandatory path expressionsto Vertex and a corresponding MonteCarlo
simulation particle. We also want to return the simulated MonteCarlo
Vertex if there is any referenceto it as well. The mapping is somewhat
moredensethan our other examples.The result is a sequenceof unnesting
operations,which canbe better visualizedwith the executionplan of 8.31.

Example 5:

[[
 my par ticl e:P ar ticl e
tr ue=fg (� ! 
 pr imv er tex :V er tex

tr ue=fg ;

(
 simpar ticl e:M CP ar ticl e
tr ue=fg (� ,! 
 simpr imv er tex :M CV er tex

tr ue=fg )))]]D =

(D6) =[[?� ! (
 pr imv er tex :V er tex
tr ue=fg ; (
 simpar ticl e:M CP ar ticl e

tr ue=fg � ,!


 simpr imv er tex :M CV er tex
tr ue=fg ))]]my par ticl e

D ([[
 my par ticl e:P ar ticl e
tr ue=fg ]]D )
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(D7) = [[(� ! 
 simpar ticl e:M CP ar ticl e
tr ue=fg (� ,! 
 simpr imv er tex :M CV er tex

tr ue=fg )]]my par ticl e
D

([[
 pr imv er tex :V er tex
tr ue=fg ]]my par ticl e

D ([[
 my par ticl e:P ar ticl e
tr ue=fg ]]D )

(D7) = [[� ,! 
 simv er tex :M CV er tex
tr ue=fg ]]simpar ticl e

([[� ! 
 simpar ticl e:M CP ar ticl e
tr ue=fg ]]my par ticl e

([[� ! 
 pr imv er tex :V er tex
tr ue=fg ]]my par ticl e

D

([[
 my par ticl e:P ar ticl e
tr ue=fg ]]D )))

(D2) = [[� ,! 
 simv er tex :M CV er tex
tr ue=fg ]]simpar ticl e

([[� ! 
 simpar ticl e:M CP ar ticl e
tr ue=fg ]]my par ticl e

([[� ! 
 pr imv er tex :V er tex
tr ue=fg ]]my par ticl e

D

(hh� [ =� (evt;my par ticl e):<ev t;my par ticl e>
(tr ue) (� my par ticl e:[evt:P ar ticl e]

(tr ue) (

[[QE vent ]]E )) ii [evt ;m yparticle ])))

(D9) = [[� ,! 
 simv er tex :M CV er tex
tr ue=fg ]]simpar ticl e

([[� ! 
 simpar ticl e:M CP ar ticl e
tr ue=fg ]]my par ticl e

(hh� pr imv er tex :[my par ticl e:Ver tex ]
(tr ue)

(� [ =� (evt;my par ticl e):<ev t;my par ticl e>
(tr ue) (� my par ticl e:[evt:P ar ticl e]

(tr ue) (

[[QE vent ]]E ))) ii [evt ;m yparticle ;prim vertex ]))

(D9) = [[� ,! 
 simv er tex :M CV er tex
tr ue=fg ]]simpar ticl e

(hh� simpar ticl e:[my par ticl e:M CP ar ticl e]
(tr ue)

(� pr imv er tex :[my par ticl e:Ver tex ]
(tr ue)

(� [ =� (evt;my par ticl e):<ev t;my par ticl e>
(tr ue) (� my par ticl e:[evt:P ar ticl e]

(tr ue) (

[[QE vent ]]E )))) ii [evt ;m yparticle ;prim vertex ;simparticle ])

(D11)

= hh=� simpr imv er tex :[simpar ticl e:M CV er tex ]
(tr ue) (

� simpar ticl e:[my par ticl e:M CP ar ticl e]>
(tr ue) (

� pr imv er tex :[my par ticl e:Ver tex ]>
(tr ue) (

� [ =� (evt;my par ticl e):<ev t;my par ticl e>
(tr ue) (� my par ticl e:[evt:P ar ticl e]

(tr ue) (

[[QE vent ]]E ))))) ii [evt ;m yparticle ;prim vertex ;simparticle ;simprim vertex ]
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=� simpr imv er tex :[simpar ticl e:M CV er tex ]
(tr ue)

< ev t; my par ticle; pr imv er tex; simpar ticle; simpr imv er tex >

� simpar ticl e:[my par ticl e:M CP ar ticl e]
(tr ue)

simparticle

� pr imv er tex :[my par ticl e:Ver tex ]
(tr ue)

primvertex

� [ =� (evt;my par ticl e):<ev t;my par ticl e>
(tr ue)

< evt; myparticl e >

� �my par ticl e:[evt:P ar ticl e]
(tr ue)

myparticle

[[QE vent ]]E

evt

Figure 8.31: Example of the mapping of the referenceoperator
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Aggregator

[[2 aggf unc(expr )
pr ed (Q)]]D =

hh� aggf unc=� (w):([value:expr (w)]) =evt:id
� (w):(pr ed) ([[Q]]D )ii [value :expr (w )] (D13)

aggf unc 2 f max; min; avgg

[[2 agg(expr )
pr ed (Q)]]D =

hh� agg=� (w):([value:expr (w);tupl e:w])=evt:id
� (w):(pr ed) ([[Q]]D )ii [value :expr (w );tuple :w ] (D14)

agg 2 f M ax; M ing

Figure 8.32: Translation rules for the aggregatoroperator.

A nest operator groups the tuples by evt. Each group will then be
reducedby the aggregatorfunction Max or Min, and will produceasresult
a setof tuples(of typef � g), whereeach tuple is the maximum or minimum
expr value.

In order to show the usageof theserules we have Example6. Here,we
have a selectionof all the particles with positive energy, and we want to
group them by event and determinethe onethat has the maximum value
for the massattribute with the restriction that it should be greater than
0.65. The result of the mapping can be better visualizedin the execution
plan of Fig.8.33.

Example 6:

[[2 M ax(my par ticl e:mass)
0my par ticl e:mass> 0:650(
 my par ticl e:P ar ticl e

0E ner gy> 00=fg )]]D =

(D14) = � M ax=� (w):([value:my par ticl e:mass;tupl e:w])=evt:id
� (w):(0my par ticl e:mass> 0:650) (

2 M ax(my par ticl e:mass)
0my par ticl e:mass> 0:650([[
 my par ticl e:P ar ticl e

0E ner gy> 00=fg ]]D ))

(D2) = hh� M ax=� (w):([value:my par ticl e:mass;tupl e:w])=evt:id
� (w):(0my par ticl e:mass> 0:650) (

hh� [ =� (evt;my par ticl e):<ev t;my par ticl e>
� (evt;my par ticl e):(tr ue) (
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� � (evt):[my par ticl e:evt:P ar ticl e]
� (evt;my par ticl e):(pr ed(0E ner gy> 00)) ([[QE vent ]]E ))

ii [evt ;m yparticle ])ii [w =[ evt ;m yparticle ]]

= hh
� M ax=[value:my par ticl e:mass;tupl e:<ev t;my par ticl e> ]=evt:id

� (evt;my par ticl e):(0my par ticl e:mass> 0:650) (

� [ =� (evt;my par ticl e):<ev t;my par ticl e>
� (evt;my par ticl e):(tr ue) (

� � (evt):[my par ticl e:evt:P ar ticl e]
� (evt;my par ticl e):(0E ner gy> 00)([[QE vent ]]E )

)
ii [evt ;m yparticle ]

� M ax=� (evt;my par ticl e):[value:my par ticl e:mass;tupl e:<ev t;my par ticl e> ]=evt:id )
� (evt;my par ticl e):(0my par ticl e:mass> 0:650)

< evt; myparticl e >

� [ =� (evt;my par ticl e):<ev t;my par ticl e>
� (evt;my par ticl e):(tr ue)

� � (evt):[evt:P ar ticl e]
� (evt;my par ticl e):(pr ed(0E ner gy> 00))

myparticle

[[QE vent ]]E

evt

Figure 8.33: Result of a simple aggregatoroperator example
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Minimal Distance

[[Q1� f dist
expr =agg ! Q2]]D =

= hh� agg=<v alue= f dist;tupl e=([ evt:tupl e1 :evt ]� (tupl e1=evt)� (tupl e2 =evt)) >= [evt:id ])
tr ue (

� [ =� (<tupl e1 ;tupl e2> ):([evt :tupl e1 :evt ]� (tupl e1=evt)� (tupl e2 =evt))
� (<tupl e1 ;tupl e2> ):(tr ue) (
[[Q2]]D

=

[tupl e1 :evt:id ]=[ tupl e2:evt:id ]^ expr (f dist ) [[Q1]]D ))
ii [evt ;A (tuple 1 =evt );A (tuple 2 =evt )] (D15)

agg 2 f M ax; M ing

[[Q1� f dist
expr =agg ,! Q2]]D =

= hh� agg=<v alue= f dist;tupl e=[ evt:tupl e1 :evt ]� (tupl e1=evt)� (tupl e2 =evt)) >= [evt:id ]))
tr ue (

� [ =� (<tupl e1 ;tupl e2> ):([evt :tupl e1 :evt ]� (tupl e1=evt)� (tupl e2 =evt))
� (<tupl e1 ;tupl e2> ):(tr ue) (
[[Q2]]D > [tupl e1 :evt:id ]=[ tupl e2:evt:id ]^ expr (f dist ) [[Q1]]D ))

ii [evt ;A (tuple 1 =evt );A (tuple 2 =evt )] (D16)
agg 2 f M ax; M ing

Figure 8.34: Translation rules for the minimal distanceoperators.

Both rulesD15;(mandatory), and D16, (non-mandatory), are very sim-
ilar. The di�erence betweenthem is only the join operator. Tn the case
of the non-mandatory versionwe will usea left-outer join.

The join constructs a set of pairs of all tuples which result from the
query plan mapped from Q1 that areassociated with the onesof the query
plan mappedfrom Q2 through the validation of the logicalexpressionexpr.
In other words, for each event all resulting tuples tuple1 and tuple2 are
combined. In the caseof the left-outer join of the non-mandatory case,
the result is a set of pairs that combinesall valuesof tuple1 with all values
of tuple2, if their condition predicate is true. In the casethat no tuple2

valuesexist (or are not valid) for every tuple1 a pair < tuple1; nul l > is
returned.

The nestoperator groupsthe tuple input,[evt : tuple1:evt]� (tuple1=evt)�
(tuple2=evt) and their evaluated distancefunction, f dist , by the attribute
value[evt:id ] of each tuple. Each group is reducedby the aggregatorfunc-
tion, M ax or M in , and the result is the �rst tuple found that veri�es the
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aggregation.
In our Example7, we want to determinefor the Particles and Vertexes

the pairs per event with the result of the minimal distancegreater than
0.12(the minimal function is de�ned by the expressionfdist). As we have
usedthe non-mandatory versionof the minimal distanceoperator in this
example, the resulting tuple pair can have empty Vertex elements. The
result of using our described rules is visualizedin Fig.8.35.

Example 7:

f dist =
p

(w1:x � w2:x)2 + (w1:y � w2:y)2 + (w1:z � w2:z)2

[[
 my par ticl e:P ar ticl e
� (w1 ):tr ue=fg � f dist

f dist> 0:12=M in ,! 
 my ver tex :V er tex
� (w):tr ue=fg ]]D =

(D16) = � agg=<v alue= f dist;tupl e=[ evt:tupl e1 :evt ]� (tupl e1=evt)� (tupl e2 =evt)) >= [evt:id ]))
tr ue (
[[
 my par ticl e:P ar ticl e

� (w1 ):tr ue=fg ]]D � f dist
f dist> 0:12=M in ,! [[
 my ver tex :V er tex

� (w):tr ue=fg ]]D )

(D2) = hh� agg=<v alue= f dist;tupl e=[ evt:tupl e1 :evt ]� (tupl e1=evt)� (tupl e2 =evt)) >= [evt:id ]))
tr ue (

� [ =� (evt;my par ticl e):<ev t;my par ticl e>
� (evt;my par ticl e):(tr ue) (� my par ticl e:[evt:P ar ticl e]

� (evt;my par ticl e):(tr ue) ([[QE vent ]]E ))

ii [evt ;m yparticle ]

� f dist
f dist> 0:12=M in ,!

hh

� [ =� (evt;my ver tex ):<ev t;my ver tex>
� (evt;my ver tex ):(tr ue) (� � (evt):[evt:V er tex ]

� (evt;my ver tex ):(tr ue) ([[QE vent ]]E ))

ii [evt ;m yv ertex ]

)ii [evt ;tuple 1 = m yparticle ;tuple 2 = m yv ertex ]

= hh � M in=<v alue= f dist;tupl e=[ evt;my par ticl e;myver tex ]>= [evt:id ]
(tr ue)

(� [ =[evt:tupl e1 :evt ]� (tupl e1=evt)� (tupl e2 =evt)
� (<tupl e1 ;tupl e2> ):(tr ue) (

hh� [ =<ev t;my ver tex>
� (evt;my ver tex ):(tr ue) (

� � (evt):[evt:V er tex ]
� (evt;my ver tex ):(tr ue) ([[QE vent ]]E )) ii [evt ;m yv ertex ]

B [tupl e1:evt:id ]=[ tupl e2 :evt:id ]^ f dist> 0:12

hh� [ =<ev t;my par ticl e>
� (evt;my par ticl e):(tr ue) (

� � (evt):[evt:P ar ticl e]
� (evt;my par ticl e):(tr ue) ([[QE vent ]]E )) ii [evt ;m yparticle ]

)) ii [evt ;m yparticle ;m yv ertex ]
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� M in=<v alue= f dist;tupl e=[ evt;my par ticl e;myver tex ]>= [evt:id ]
� (evt;my ver tex;my par ticl e):(tr ue)

< evt; myparticl e;myvertex >

� [ =[evt:tupl e1 :evt ]� (tupl e1=evt)� (tupl e2 =evt)
� (<tupl e1 ;tupl e2> ):(tr ue)

< evt; myparticl e;myvertex >

B [tupl e1:evt:id ]=[ tupl e2 :evt:id ]^ f dist> 0:12

< tupl e1; tupl e2 >

� [ =� (evt;my ver tex ):<ev t;my ver tex>
� (evt;my ver tex ):(tr ue)

myvertex

� � (evt):[evt:V er tex ]
� (evt;my ver tex ):(tr ue)

[[QE vent ]]E

evt

� [ =� (evt;my par ticl e):<ev t;my par ticl e>
� (evt;my par ticl e):(tr ue)

myparticle

� � (evt):[evt:P ar ticl e]
� (evt;my par ticl e):(tr ue)

[[QE vent ]]E

evt

Figure 8.35: Result of the minimal distanceexample
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Comparison

[[� pr ed(Q)]]D = hh� � (w):pr ed([[Q]]D )ii w (D17)

[[� pr ed1 (� pr ed2 (Q))]]D = [[� pr ed1 and pr ed2 ([[Q]]D )]]D (D18)

Figure 8.36: Translation rule of the comparisonoperator

By rule D17, the selectionoperator � �lters out the tuples resulting
from the rest of the query plan, generatedby mapping the query Q. The
rule D18 is a simpli�cation that composesa conjunctive single predicate
out of two.

A possibleexample of the usageof these rules can be like the one
described in example8. It is required that the massof the vertex should
be greaterthan the particle it decays from. The corresponding query plan
generatedby using our rules can be visualizedin Fig.8.38.

Example 8:
[[� 0my ver tex:mass>my par ticl e:mass0(Q)]]D =

(D17) hh� � (w):pr ed(w)( 0my ver tex:mass>my par ticl e:mass0)([[Q]]D )ii w
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� � (w):pr ed(w)( 0my ver tex:mass>my par ticl e:mass0)

< w >

[[Q]]D

w

Figure 8.37: Result of a comparisonsimple example
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The Result Op erators

[[? ]]R = hh[[QD ecay]]D ii w (R0)

[[ 1D
lattr ib]]R = � H 1D =� (w):l attr ib

� (w):pr ed (hh[[QD ecay]]D ii w) (R1)

[[ 2D
lattr ib]]R = � H 2D =� (w):l attr ib

� (w):pr ed (hh[[QD ecay]]D ii w) (R2)

[[ 3D
lattr ib]]R = � H 3D =� (w):l attr ib

� (w):pr ed (hh[[QD ecay]]D ii w) (R3)

[[ # aggf unc
head ]]R = � aggf unc=� (w):(head)

� (w):(tr ue) (hh[[QD ecay]]D ii w) (R4)

aggf unc 2 f max; min; sum; count;avg; :::g

Figure 8.38: Result set transformation rules.

The rule R0 statesthat in caseof omissionof result operatorsthe result
set will be the collection retrieved by the evaluation of [[QD ecay]]D . The
usefulnessof this rule dependson the implementation of it, but could be
consideredasa way to feedsomeother toolson top of PHEASANT meant
to manipulate the result in somedi�erent ways.

The aggregatefunctions to generatehistogramscan be de�ned as de-
scribed in Fig.8.39.

HiD, i 2 f 1; 2; 3g: f � g ! � H i

Figure 8.39: Signatureof the histogram aggregatefunctions

In Fig.8.40,we exemplify the mapping of the value result operator. In
this case,the user is interested in summing up all the energy values in
the tuples that result from the algebramapped by: [[QD ecay]]D . Basically,
this will represent a reduction on the tuple stream, with the aggregation
function Sum.
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Example 9:

[[ # Sum
0my par ticl e:energy0]]R =

R4 � Sum=� (w):([r :my par ticl e:energy])
� (w):(tr ue) (hh[[QD ecay]]D ii w)

� Sum=� (w):([r :my par ticl e:energy])
� (w):(tr ue)

[[QD ecay]]D

< w >

Figure 8.40: Transformation result of a result operator using the aggrega-
tion function Sum.
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8.4 Summary

In this section,wehavedescribedthe designapproach for the HEP analysis
query language.

A carefully selectedalphabet notation was introduced. It aims to deal
with the domain-speci�c conceptsat all the stagesof the query patterns.
This is part of our global strategy to approach the optimization of the
HEP analysisprocess.

We described the syntax of PHEASANT QL. We started with the
grammar of the abstract syntax graph, which is more close to the vi-
sual languageparsingrequirements, and proceededto a moreabstract ap-
proach, although more easyto deal, which was the syntax tree grammar.
Togetherwith those de�nitions, rules to describe valid or falsesentences
in our languagewere set.

Finally, the semantics of the languagewere de�ned by making use
of the translational semantics mapping. Syntax-to-syntax mapping from
PHEASANT QL into an algebrawas used.

Further optimization at this phasecan be done either by proposing
an alternative languageand/or addition of new operators, or by tighten-
ing controlling the translation to the algebraicnotation by adding more
semantic rules.
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Chapter 9

Protot yp e Framew ork -
PHEASANT

In this chapter, we present the architecture of the framework of our im-
plemented prototype.

We start with a generaloverview of this framework in Section9.1. Af-
terwards, the several query transformation modules are detailed: First,
we describe the user interface in section 9.2; then, in section 9.3, we ex-
plain the plan generator;and �nally , in section 9.4, we present the code
generator.

9.1 General Overview

It is not the purposeof this thesisto discussa full-
edged implementation,
but to present a proposedarchitecture of a feasibleprototype. Therefore,
wedescribe the architectural designand implementation in a very compact
way.

In order to jump into the description of the three main modules, we
start by introducing the reader to the generaldesign. In this overview
section, we �rst give a systemengineeringperspective of the framework,
remembering the roles and use casesfrom the requirements. Then, we
give an insight into the architectural designand, �nally , we explain the
technology usedfor implementing PHEASANT.

139



140 CHAPTER 9. PROTOTYPE FRAMEW ORK - PHEASANT

9.1.1 Roles and Use Cases

As reasonedin Chapter 7, inspired by the Domain Modeling approach we
proposedto tackle the problemin HEP analysisby specifyinga framework
that supports di�erent modeling levels [7] (seeFig.7.1). We reserve to
ourselves the role of meta-meta-modelers. This meansthat we have set
the data meta-metamodel the framework hasto dealwith. The instances
of this meta-metamodel (see9.1) are de�ned by the meta-modeler.

1

*

* 1* *

Collection Catalog

<<Collection>>

contains

Particle

Meta�Meta�Model

Meta�Model

Model

Event <<Physics Objects>>

Vertex

MC_VertexMC_Particle

EventRun

Figure 9.1: Model levels. The domain experts will deal with the meta-
modeling of physicsobjects.

In this case,we assignthe responsibility of meta-modeling to the team
of developers in a speci�c experiment. The framework copes with the
description of the speci�cities of the schemathat have somevariations in
di�erent experiments.

The physicist, who takesthe role of the query modeler, is immediately
awareof the changesin the instancesof the meta-meta-model just by using
the visual operators when modeling his query.
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As shown in Fig.9.2, we have de�ned four main system actors. The
�nal user interacts with the system by editing the query statement and
requestsit to be run.

The domain expert is responsible for de�ning the data schema, the
user-de�ned functions and constants for the speci�c experiment.

The query storagebaseis the main repository for the queriesand their
results. It is responsible for dealing with the query history for each user
and analysis. It can be seenas the repository of the meta-information
concerningthe query itself (dealing, for instance, with details like query
graph, query result, version of the query, dates, author, time spent run-
ning, etc.).

Finally, the Physics Storagebaseis the experiment's speci�c storage
framework that dealswith the data to be analyzed.

In the �rst implementation of our prototype, we have concentrated on
the dark grey usecasesof Fig.9.2, leaving the rest for future work.

9.1.2 Arc hitecture

The systemwasdesignedto copewith several query transformation phases
requiredto deliver a target query sourcecodethat shouldbecompiledand
run against a speci�c physicsstoragebase.

Wehave devisedthree main modules,asseenin Fig.9.3: userinterface,
plan generator and code generator. Each of these modules is described
more deeply in the next sections.

The userinterfacedealswith the user'squery edition and interactively
noti�es the user of incorrect syntax. Internally, a ConcreteComponents
Graph is maintained and simultaneouslymapped,usingthe observerspat-
tern, to a corresponding Abstract Syntax Graph, as described in the last
chapter. We describe this module in more detail in Section9.2.

The Plan Generatorstarts by interpreting the Abstract Syntax Graph
and transforming it into an Abstract Syntax Tree (AST). Then, it runs
an algorithm that walks down the AST and generatesthe corresponding
algebraicquery plan (QP). Details are described in Section9.3.

Finally, the query Code Generator looks at the algebraicquery plan,
optimizes it at the algebraic logical level and generatesthe physical op-
erators. In the sequenceof that, a new algorithm generatesthe required
sourcecode to be compiledand run againstthe storagebase.This module
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Figure 9.2: Use cases- the use casesin dark grey are covered by the
prototype implementation.

is strictly bound to the speci�c target framework. The query code gener-
ator is implemented as a plug-in to our PHEASANT framework speci�c
to BEE (seeAppendix B). Other plug-ins can be addedto deal with dif-
ferent target physicsframeworks without necessarilyimposingchangesto
the rest of the query generationmodules. The Code Generatormodule is
described in Section9.4.
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Query

QP

Target Code

User Interface

Plan Generator

Code Generator

ASG

Figure 9.3: Generalstructure

9.1.3 Technology Used for the Implemen tation

In order to test our hypothesis,we delivereda �rst prototype implemented
in the TCL/TK scripting languageon a Unix platform. We use extra
packagesfor dealingwith graphs,treesand visual widgets. The advantage
of a scripting languagelikeTCL/TK over other structured languagesis the
fast implementation due to the simplicity of the languageitself and their
visual manipulation packages.It allowsalsoeasyportabilit y, which implies
that wecanusethe sameproduct on other platforms. In our case,the only
changeswill take placeat the code generatorplug-ins. Nevertheless,the
unstructured nature of the languagemakesit di�cult to produceelegant
and clean code. The larger it gets, the more di�cult it is to maintain.
Therefore, we suggestthat the next phaseof the engineeringlife cycle
delivers a product using a structured languagelike C++ or Java.
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9.2 User In terface - The Visual Editor

This sectionexplainsthe architecture of the visual editor, which provides
the userwith an environment for editing visual queries.This softwaredeals
with the concretecomponents and the concretesyntax graph, delivering
the corresponding ASG into the next architectural layers.

First, we justify the generaldesigndecisionstaken, basedon related
work done in Human-Computer Interface (HCI) and Visual Languages
(VL). Then we describe the di�erent modules required for our solution:
Graphical User Interface (GUI) and Abstract Syntax Graph (ASG) gen-
erator. We concludethis sectionby discussingsomeproposalsfor future
work.

9.2.1 Related Work and Design Decisions

A good introduction to the implementation of Visual Languageeditorscan
be found in [44]. There areseveral di�erent ways to implement them. One
option are so-calledfree hand editors, in which userscan draw whatever
they want on a virtual canvasand producea graphical bitmap asoutput.
This entails image processingand pattern recognition to understand the
programmer's intentions by identifying the graphical objects and their
relationships. (With text scannedfrom paper, the problem would be the
same.) This editor is the most 
exible solution, but, on the other hand,
it is very di�cult to interpret the input of the user.

As HEP analysisimplies a clear symbology and query pattern, we do
not allow this 
exibilit y, but provide a prede�ned set of graphical ob-
jects that can be used. Instead of allowing the speci�cation of text,lines,
rectangles,or circles which are then scannedand parsed into graphical
objects, we go further than that and we allow the user to specify already
the graphical objects/symbols of the query language.The meaningof the
pictorial elements is either alreadyknown or easyto learn, sowe apply an
incremental parsing approach wherethe query elements are easily parsed
while being built. An internal spatial relation graph is generated.

At this stage,editors can be classi�ed as:

� Syntax-free - They are merely usedto enter visual queries,without
any syntax concerned.
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� Syntax-directed - They only allow the user to enter syntactically
correct queries.

� Syntax-assisted- They prompt the usersto write syntactically cor-
rect queries.

Syntax-free editors were not under considerationbecausewe needto
syntactically validate the query construction. We could leave the respon-
sibilit y to a syntax checker module that feedsthe syntax problemsback
to the editor after the query construction. But the problem of this ap-
proach is that becauseof all the syntax errors returned back, the userhas
to memorizethe syntax if he wants to have a lesstime-consumingquery
production phase. We want the user to realize when he is producing an
invalid query sentence.

Having declined the �rst option, we are left either with a syntax-
directed or a syntax-assistededitor.

Syntax-directed editorsenforcecorrectuserinputs. Inputs that con
ict
with the given syntax are immediately rejected. These editors are �ne
for situations where we do not have to deal with intermediate syntactic
states. It is much morecomplexto implement theseeditors if intermediate
statesoccur that are syntactically incorrect but potentially correct. If, for
instance,the Transformeroperator in PHEASANT is left alone,wecansay
that the question is incorrect. However, it is potentially correct because
we can connect this operator to the selection operators and the result
particle operator. In our opinion, theseeditors are not the right approach
for PHEASANT, asusersaregoingto have the sameproblemsaswith the
existing textual interfaces,only on a graphical level. As a consequence,
we have decidedto implement a syntax-assistededitor, although knowing
that it is harder to develop than a syntax-directed one, as it is more
interactive. This means that it helps the user to arrive at a correctly
formed syntax by giving hints. Incorrect constellationsof objects are not
rejectedoutright but are highlighted to indicate problemswith the query.
Fig.9.6 shows the query from Fig.8.1 in the layout of our editor. Note the
pop-up menu in the lower right corner of the �gure. This is usedto input
the before-mentioned attribute and condition lists.

When dealing with languagesthat imply the useof the keyboard for
the input of text (for labeling, the speci�cation of strings, or mathemat-
ical equations) and using the mouseto draw the graphics, this implies



146 CHAPTER 9. PROTOTYPE FRAMEW ORK - PHEASANT

that the programmer is constantly distracted. Together with that, the
repeatedmovement of the mousepointer betweenthe \palette" to select
the graphical elements and the virtual canvas can causeuser complaints.
Becauseof thesetwo reasons,we implement pop-up menus on the drawing
site.

Abstract Syntax ModelConcrete Components Spatial Relationship Graph

Concrete->SRG SRG->AMS

Figure 9.4: Transformation from CSG to ASG

We must identify two levelsof syntax: Concreteand Abstract Syntax.
The concretesyntax must include every detail concerningvisual as-

pects of the language,whereasthe abstract syntax can safely ignore all
aspects that are not neededwithin the semantics de�nition. This means
that the abstract syntax abstractsconcretesymbolsand geometricdetails,
like sizeand position of objects.

In parallel to the textual languageparsing, the visual languagehas a
sequenceof stepsthat involvesa three-stageprocess:

� Scanning or lexical analysis - Someintermediate data structure
is necessaryto represent the pictorial structure of the diagram. The
physical layout is then scannedto produce a spatial relationships
graph (SRG), indicating the components of the diagram and their
relationships. It contains all graphical objects, but instead of con-
taining all individual properties, it represents the higher-level spatial
relations which hold betweenits objects.

� Parsing or syntax analysis - The SRG is mapped to an abstract
syntax graph (ASG) to re
ect the internal (logical) structure of the
diagram accordingto its visual language. Nodesand edgesin this
graph should correspond to languageconstructs, but do not deter-
mine what theseconstructs look like.
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� Generation or semantic analysis - This phaseimplies the inter-
pretation of the logical structuresaccordingto the rulesfor semantic
description of the languageand the corresponding generationof a
target code and/or error report. We will concentrate on this topic
in the following sections.

9.2.2 The Arc hitecture of the Visual Editor

SRG

Manager

GUI

Manager

ASG

Rule
Manager

Schema
Manager

Visual Editor
Module

User Input

Abstract Syntax Graph Output

Figure 9.5: Components of the Visual Editor

The Visual Editor of our implemented prototype consistsof �v e main
components: GUI, Spatial Relationship Graph (SRG) manager,Abstract
Syntax Graph manager,Rule managerand Schemamanager.
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GUI

Figure 9.6: PHEASANT query layout

GUI is a typical vector graphicseditor, as it can be seenon Fig.9.6. It
noti�es the SRG managerevery time a concretecomponent is inserted or
modi�ed in order to update both the SRG and the ASG. Thesepackages
verify the corresponding syntax. In order to provide feedback to the user,
they return the status through the messagewindow or by using colors to
indicate the incompletestate of the query sentencedrawn so far.

Someof the visual elements have a secondlevel of detail through the
use of pop-up menus. With them, the user is able to specify condition
predicatesor extend the list of attributes represented by the element, or
even selectthe inherent type (for exampleParticle or Vertex).

The layout is composedby a typical menu bar with pull-down options;
a toolbar, where it is possibleto select the several query components; a
canvas, wherethe query is edited; and a status bar with a corresponding
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messagebox.

SRG manager

Spatial Relationship Graph manageris a graph of geometricobjects like
described in Fig.9.7. It simply dealswith insertions,updatesand removals
from the graph, leaving all the syntax interpretation for the ASG manager
to which it communicatesthe changes.

ASG manager

This is a graph manager that deals with the syntax graph generation
derived from the graph grammar described in Chapter 8. This manageris
responsiblefor calling the rule managerand the schemamanagerto verify
the syntactical validit y of the sentence.

It is possibleto implement a type-safeor a non-type-safedata model.
Our framework wasdesignedto support the �rst one. This way, it is able
to check and reject queriesthat will generaterun-time errors due to type
inconsistencies.

Rule manager

Although very primitiv e in our �rst prototype implementation, this man-
agercollectsa setof grammarrules(basedon our graphgrammarspeci�ed
in Chapter 8) to deal syntactically with the components. This manageris
also fed by a script during the initialization phase,that provides a list of
arithmetic constants and user de�ned functions (UDFs) that are consid-
ered to be valid.

In order to check the well-formednessof the text strings where the
userdescribesthe query predicates(or conditionsattributes) and the new
attributes description for each visual component, a special parser was
implemented. It has to deal with arithmetic inequality expressionsthat
understandthe constants and user-de�ned functions.

Schema manager

To support the slight variations in the data schema of each di�erent ex-
periment framework, this module acceptsthe schema description (in the
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Figure 9.7: Meta-description of the concretesymbols

shape of a graph). The schema objects must obey to the basestructure
presented in Fig.9.1.
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# I nserting N odes#

N ode: Run X AttList X Type
AttList = < f id B I GI N Tg f f lag BI GI N Tg::: >
Type= Container

N ode: Event X AttList X Type
AttList = < f id B I GI N Tg f exp SM ALLI N Tg f f lagBI GI N Tg� � � >
Type= Event

N ode: Particl e X Attl ist X Type
AttList = < f xf DOUBLE g f yf DOUBLE g� � � >
Type= Physics Objects

: : :

# I nserting Ar cs

Ar c : Run contains Event
Ar c : Event contains Particl e
Ar c : Event contains Vertex
Ar c : Particl e ref ers Vertex using vertex
Ar c : Vertex ref ers Particl e using ingoing
Ar c : Vertex ref ers Particl e using outgoing
: : :

Figure 9.8: Specifying the schema in PHEASANT

9.2.3 Future Work

This languageeditor meetsmany of the requirements for e�ective graph-
ical user interfaces. Human Computer Interaction here takes the main
role in increasingthe usability. Our �rst prototype can and shouldbe im-
proved on both the output of the visual languageand data visualization
by taking what this research areahas to o�er.
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For instance, it is very well known that providing copying protocols
to produce duplicate fragments like cut-&-paste mechanismsreducesthe
time spent to reproducesimilar query fragments. A typical examplewould
be when the user speci�es the list of predicatesof a selectionobject and
doesnot want to input them againin another similar selectionobject part
of the decay beingspeci�ed. Another interesting ideawould be to support
a list of template queries,wherethe userwould get a skeleton of a query
that he could �ll in and/or expand.

9.3 The Generation of a Logical Query Plan

In this section,we describe how we have implemented the transformation
of the Abstract Syntax Graph (ASG) into a valid logical query plan. The
ASG provided by the User Interface tool will be �rst translated using an
intermediate step into an Abstract Syntax Tree (AST), and then into a
logical query plan.

Abstract Syntax Graph Abstract Syntax Tree Logical Query Plan

ASG�>AST AST�>LPT

Figure 9.9: Generationof a logical query plan

The processof generatinga Logical Plan Tree (LPT) from the query
represented in the ASG internal structure derived from the GUI applica-
tion, described in the previous chapter, is split into two major steps. In
the �rst one, the possibly cyclic graph is transformed into a tree, which
is easierto deal with. In fact, the algorithms to interpret the graph get
very complexand error-prone. In contrast, handling treesis much simpler.
Our secondstepdealswith the translation of the tree into the correspond-
ing algebraicoperators, as predicted in the semantics description of our
languagePHEASANT QL.
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9.3.1 AST Generator

We now introduce intermediate transformation stepsapplied directly to
the Abstract Syntax Graph (ASG). At the moment, the ASG hasthe form
of a DAG. After re-writing it, we will have translated it into an Abstract
Syntax Tree (AST).

First, we present our �rst naive approach, asdescribed in [9], present-
ing its drawbacks, then we present an improved approach.

Rewriting the Visual Query with the Naiv e approac h

The in tersection and union operators - At the �rst step of the query
- the collection selection,when more than two containers are linked by
the intersectionoperator - it is necessaryto unfold the graph structure in
order to be able to run the semantic rules for intersection that just deal
with two operators. The rule is visually explainedin Fig.9.10.

a c

b

d

a

b

d

c

A) B)

Unfolding from A) to B) the QCollection graph with in tersections or unions (represen ted by a circle)

with more then t wo op erators.

Figure 9.10: Unfolding the QCollection

Comparison operators - As described before, the Comparisonis a
binary operator that is linked with non-directededgesto Selectionoper-
ators. This operator necessarilyclosesthe DAG, which is more easyto
deal with if we break it up into a tree.



154 CHAPTER 9. PROTOTYPE FRAMEW ORK - PHEASANT

While dealingwith this operator, the break-uprule dependson whether
both selectionobjects have to be dependent on each other or not. In the
�rst case,we operate the decomposition by using the transformation rules
depicted in Fig.9.11 on the left and middle side. If they are dependent,
we usethe transformation depictedon the right side.

As stated by the rule on the left of Fig.9.11,the closedDAG is broken
into a tree-like structure by making a copy Y' of the Y selectionobject
and connectingit as input to the Comparisonoperator.

X Y

X Y

Y'

A)

B)

X
A)

B)

Y

X

Y'

Y

X'

Y

Z

X

Y

Z

X

A)

B)

Y' Z'

in the three situations A) is transformed in to B):

Left side: Rewrite rule of the Compare op erator with ob jects part of the same deca y tree.

Middle: Rule for rewriting the compare op erator b et ween selection ob jects of di�eren t deca y chain trees.

Righ t side: describ es the rewriting rule for the compare op erator when a "c ol lision" occurs.

Figure 9.11: Naive rewriting of the comparisonoperators

When comparisonoperations are usedbetweenselectionobjects that
arenot part of the samedirect decay tree (have non-dependency),we copy
both selectionobjects, and two operator nodes are inserted accordingly,
as it is depicted in Fig.9.11 (middle transformation).

In caseof "collision" , which meansthat the sameselectionobject is
being used by two or more di�erent comparisonoperators, it should be
decomposedoneby one(seeFig.9.11, right transformation). The criteria
for the order of nesting is set in the implementation phase.

Sample rewriting - A completeexampleof the rules de�ned in this
sectioncanbe found in Figure 9.12,which is a rewrite of our �rst example
in Figure 8.1 and also usesan object referencefrom the particle Pi + to
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its Monte Carlo counterpart.

1D

Pi+

run3

Pi run3

Pi+
Pi+

run3

Pi
�

K0

D+

T1

T2

A1

PV

mcPi

�

Figure 9.12: The D + decay examplerewritten with a naive approach

Rewriting the Visual Query with a Non-defactorization approac h

run3

Pi+

Pi+

1D
Event

Pi�

K0

D+

T1

T2

A1

PV

Moving to the closest common parental node

Figure 9.13: Rewriting the graph into a tree by restructuring the compar-
ison nodes
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The naive splitting approach is satisfactory for the collection queries,
but as far as the decay description queriesare concerned,this approach
has the problem of causing an exponential query plan explosion. The
de-factorizationproducesredundancyin the semantics mapping, which is
moredi�cult to deal with for optimization purposes.The resulting query
plan, after the translation of the semantic translational rules, would be
extremely ine�cien t. The natural visual factorization of the user is being
wasted this way.

In accordancewith the semantics description of the languagein the
last chapter, we can observe that comparisonoperatorsrepresent purely a
selectionpredicate. Abstracting the syntax as proposedby our BNF like
grammar, although being designedfor formal purposes,still helps us in
the implementation phase.

In fact, if we remove thesecomparisonoperators from their placeand
add their predicate to a conjunctive list to be applied to the root node,
the meaningwill keepthe same.This is another form of de-factorization.
The price to pay in this caseis that whentranslating the semantics we will
get a query executionplan with late selections.As a result, longer object
streamsare usedin main memory, data are kept unnecessarilydata, and
computational resourcesarewastedwith unnecessarydata manipulations.

In consequenceof this line of thought, we can do even better than
that. We want to keepthe factorization. If we set a rule that moves the
predicate to the closestparental connectionnode in the tree, it is more
e�cien t sincethe comparisonalways implies a join of two branchesin the
query tree (seeFig.9.13).

9.3.2 Logical Query Plan Generator

Basedon the descriptionof our mappinggenerator,we wereable to derive
a recursive algorithm that readsthe query tree.

This algorithm descendsfrom the query tree root and walks down its
branchesuntil it reachesthe leavesand transforms the syntax tree into a
corresponding algebraicquery plan.

The following pseudo-code roughly represents the algorithm for map-
ping the decay tree (for simplicity reasons,weomit the part that translates
the collections):



9.3. THE GENERATION OF A LOGICAL QUERY PLAN 157

MapDeca y
Input: Node in the AST as node
Output: Query plan sub-Tree

switc h node:

case 

if (deriveType(
 ) = � ! )

childs = getChil ds(� ! )
tr ee= fg
foreach child in childs

mapchild = M apDecay(child)
if (tr ee= fg ) tr ee= mapchild
else tr ee= setTree(

=

; f tr ee;mapchildg)
setTree(� ; childs)
return setTree(� ; tr ee)

if (deriveType(
 ) = � � ! )
childs = getChil ds(� ! )
if (mandatory(deriveType(
 )) = True )

tr ee= setTree(� ; setTree(�; QEvent))
foreach child in childs

tr ee= setTree(�; tr ee)
else

tr ee= setTree(� ; setTree(= �; QEvent))
foreach child in childs

tr ee= setTree(= �; tr ee)
return tr ee

if (deriveType(
 ) = � � ! )
if (mandatory(deriveType(
 )) = True)

return setTree(� ;
setTree(

=

; M apDecay(
 ); M apDecay(getChil d(
 ))))
else

return setTree(� ;
setTree( > ; M apDecay(
 ); M apDecay(getChil d(
 ))))

else if (deriveType(
 ) = fg )
return setTree(� ; setTree(�; QEvent))
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MapDeca y (cont.)

case ROOT
childs = getChil ds(ROOT)
tr ee= fg
foreach child in childs

mapchild = M apDecay(child)
if (tr ee= fg ) tr ee= mapchild
else tr ee= setTree(

=

; f tr ee;mapchildg)
setTree(� ; childs)
return setTree(� ; tr ee)

case
return setTree(� ; setTree(� ); M apDecay(getChil d(node))

case �
parent = N ewN ode(� )
child = M apDecay(getChil d(node))
return setTree(parent; children)

As saidbefore,this approach wasusedfor a prototype implementation.
Therefore, we believe there is still plenty of room for improvement in
this phase. Deriving more elegant or improved algorithms is the possible
evolution of this work.

9.4 Code Generation

In this section,we brie
y describe how we have implemented the genera-
tion of code starting with a logical query plan and then optimizing it and
generatingthe physical query plan that is �nally mapped into the target
code.



9.4. CODE GENERATION 159

Optimized Plan Tree Target Source CodeLogical Query Plan

OPT�>TSCLPT�>OPT

Figure 9.14: Sourcecode generation

9.4.1 Query Plan Optimization

In this phase,the initial logicalqueryplan tree is re-written into an equiva-
lent, but moree�cien t expressionusing transformation rules. This means
that it will beoptimized into a newalgebraicquery plan and then mapped
into a corresponding physical executionplan that usesphysical operators.
We have left out the logical optimization from our prototype, sincethis is
an active research area that is beyond the scope of our thesis. It should,
nevertheless,be consideredin the next phaseof the implementation. A
good introduction to the topic can be found in [59].

Usually, in other databaseengines,to generatethe physicalqueryplan,
there should be an optimizer to decideon the mapping: which selection
method to use,which join method, and where to materialize or pipeline.
In our casewe have skipped the optimization and have mapped the query
plan tree directly to physical operators. This gives room for future im-
provements that will have strong impact on the performance(but are not
relevant for the purposesof this thesis).

9.4.2 Target Code Generation

For each of the algebraicoperatorswe have built a corresponding physical
operator, but in the future we needto add more operators to broadenthe
possibilities for physical optimization. Furthermore, as a typical charac-
teristic of a domain language,rather than interpreting our query plan, we
compile the plans into an executablecode.

In order to implement this phase,we have beeninspired by the elegant
approach of Fegarasin the LDB databasesystem[51, 49]. He makesuseof
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a stream-basedexecution engine(also called pipelining or iterator-based
processing)in a purely functional fashion. As described in his paper, this
technique borrows conceptsfrom the area of lazy functional languages
avoiding to usethreads to implement the pipelining.

The concept is simple to grasp. A Stream is an entit y that contains
a stream of tuples. It operateswith the main services:Open, Closeand
Next. It can be of the type materialized,whenstored into secondstorage,
or suspended,while kept in memory.

The operator algorithms return a tuple assoon asit is constructed. In
order to retrieve all the tuples, the algorithm is called several times.

The pipelining is then guaranteedby a structure of an embeddedfunc-
tion, which is named suspendedstream, that for each time it is invoked
without arguments, it calls the algorithm to construct the tuple. The fol-
lowing pseudo-code, generatedwhen running a map algorithm that walks
down the physical plan tree, makesthis strategy evident:
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Example of query code

#############
# Query Predicates#
#############
Bool pred1(tuple t)

f if ( Some def ined predicate )
return new bool(tr ue);

else
return new bool(f alse); g

Bool pred2(tuple t)
f :::g

Bool pred3(tuple t1; tuple t2)
f :::g

#############
# Query F unctions #
#############
tuple f unction1()
f r eturn table scan((( Str eam� ) str eam[0]); &pred; g

tuple f unction2()
f r eturn table scan((( Str eam� ) str eam[1]); &pred2); g

tuple f unction3()
f r eturn N estedLoop(( � Str eam) query[1]; (� Str eam) query[2]; pred3); g

#############
# Query Str eams #
#############
query[1] = (void� )suspendedstr eam(& f unction1);
query[2] = (void� )suspendedstr eam(& f unction2);
query[3] = (void� )suspendedstr eam(& f unction3);
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A completedescription of the library of physical operator algorithms
that we have implemented basedon Fegaras'work is described in Ap-
pendix B. The signature of these algorithms is de�ned in Fig.9.15. As
we can seethere, the implementations are a simpli�cation of the algebraic
operators. In fact, the Nest algorithm is preparedto group-by the tuples
by event identi�ers and they already include the evaluation of the Reduc-
tion operator usually associated with it in our query pattern (asdescribed
in Chapter 8).

table � scan : Str eam X Predicate� ! Tuple

Union : Str eam X Str eam � ! Tuple
I ntersection : Str eam X Str eam � ! Tuple
Dif f erence: Str eam X Str eam � ! Tuple

Unnest : Str eam X Path X PredicateXOuter � ! Tuple
N estedLoop : Str eam X Str eam X PredicateX Outer � ! Tuple
N est : Str eam X H eadX AggregateFunction � ! Tuple

Figure 9.15: Physical operators: Signatureof the Table-scan

In terfacing with the Storage Engine

The experiment's framework developers are responsible for the designof
the storageengine. The function of this layer is to deal with persistent
data and their transfer between main and secondarymemory. We will
abstract from the way HEP storageenginesdo bu�er management and
how they deal with someindexing to retrieve the data.

In order to beable to coupleour operator's Streamswith the BEE (see
Appendix B) storageengine,wehavedesigneda \quick and dirt y" solution
which is to usean API on top of BEE and maintain an Event bu�er with
the FIFO (First In First Out) rule. The idea is then to make use of a
hybrid solution of similar conceptsto Eager and Lazy pointer swizzling



9.4. CODE GENERATION 163

Stream

<evt,unnested object>

Unnest

3

5

6

1

...

Unnest

BEE API

<1444>
<1440>
<1435>
<evt>

StreamEvent

evt

collection

...

Event Blob

getEventBlob(id)

Event

getNextCollection()
Stream Collection

<collection>

infNextEvent(id))

event

getunnested(event,object,position)

object

2

4

7

getEvent(id,position)

Event Buffer

getUnnested(collection,event,position)

Event

Collection

Event Blob

getNextCollection()

collection

Figure 9.16: Interacting with the storageengine

[1]. This meansthat before unnesting an object contained by an event
for the �rst time, the stream evokes a method to load the speci�c event
object from disk into main memory. All the persistent pointers this object
contains in the shape of OIDs (referencingparticles, vertexes,and others)
are transformed (swizzled) immediately into main memory pointers. At
the sametime, the referencedobjects are all copiedinto the Event bu�er.
The way data is clusteredmakesthis phasevery easy, sinceall the related
objects of the event areusually storedtogetherasa blob not only in BEE,
but also in several other analysisframeworks.

The rest of the data, like the Collectionsor the Events, are dealt with
by lazy swizzling,meaningthat no pointer is swizzledunnecessarily, only
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upon request.
In order to better understand our API's function, let us follow an

example like the one described in Fig.9.16. It starts with the stream of
collection objects that is called by the unnest operator. This activates
the method getNextCollection() in our API(1), which, in turn, calls the
getNextCollection (2) method on the BEE side. This is going to retrieve
from the classextent collection (materialized in secondstorage)the next
collection object which is then returned to the stream.

The unnest operator (3) will now request(getUnnested)for the next
Event object contained in the currently selectedcollection object. This is
achieved by giving the collection ID and the position in the set of Events.
The API will retrieve (4) the event from the Event classextent from the
BEE framework (which is indexedby the collectionID to which this Event
belongs).

The stream of Events will inform the API (5) that the Event is re-
questedevery time its method Next is called. This way, the API veri�es
whether it already exists in the event bu�er. If this is not the case,the
API callsthe getEventBlob (6) that requeststhe correspondingEvent blob
from the BEE framework. It should be stored on secondarystorageand
possibly indexed by the event ID (if the framework developers designed
it correspondingly). The objects are eagerly swizzled and are ready in
memory to be accessedby an unnest operator in (7) or by the rest of the
pipelined branchesof the query plan.
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9.5 Summary

In this chapter, we focusedon giving a top-down view of the several ar-
chitectural modulesrequired for our prototype framework.

� Visual Editor - Dealswith the interfaceto the userand generates
an ASG as the input to the following module. HCI considerations
were taken into account while designingthe �rst PHEASANT pro-
totype. We have presented our reasoningand decisionsthat took
previous research in this area into account. At this level, optimiza-
tion can be reached by exploring user interface techniques with a
strong feedback from the users. It is an evolving process,like any
HCI software engineeringproject. Therefore,we suggestmore itera-
tions in the software engineeringlife-cycle for further developments
in this area.

� Plan Generator - responsiblefor transforming the Abstract Syntax
Graph into an executionplan. We have presented several algorithms
as solutions. First, we have introduceda naive approach, and then
an improved version. As future work, we expect to derive better
algorithms.

� Code Generator - We detailed the transformation of the query
plan into a valid sourcecode that can be compiled and run against
the physicsstoragebase.



166 CHAPTER 9. PROTOTYPE FRAMEW ORK - PHEASANT



Part IV

Evaluation of the Research

167





Chapter 10

Evaluation

In previouschapters, we have detailed the new methodology proposedby
this thesis for improving the user's performanceat the analysis phase.
It is necessaryto evaluate the usability of the proposedDSVQL. In this
chapter, we are going to describe how we have structured our assessment
to do so.

To support our claims that with our methods we manageto improve
the e�ciency , reducethe error rate and have a steep learning curve, we
have to perform a completeand unbiasedevaluation of our language,com-
paring it to a real-life programming analysis framework. During the de-
velopment of our prototype, two frameworks developed by the Hera-B
collaboration were considered:ARTE [4] and BEE [55]. The �rst option
had multiple portabilit y problemsand lacked technical support like a doc-
umentation, which forced us to adopt the secondone. BEE makesuseof
C++ as a query language.

Next, we present how we have systematizedthe evaluation processto
provide quantitativ e and qualitativ e information on the usability of our
language.

In section10.1,we discussthe conceptsand the related work on inter-
faceevaluation that hasdeeplyin
uenced ours. In section10.2,wepresent
the formal de�nition of usability accordingto ISO 9241-11.Section10.3is
dedicatedto detail the taskswe have programmedto lead the experiment
to its end. In session10.4, we present our interpretation of the results
obtained in the assessment and, �nally , our conclusions.
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10.1 Related Work

An interestingwork on human factors in the evaluation of query languages
can be found in [82]. A survey in recent visual query experiencesis con-
tained in [24]. A complete evaluation of a comparisonbetween a visual
query languagenamedKaleidoquery and OQL can be found in [74]. We
have madeuseof thesepapersas major guidelinesto our experiment.

10.1.1 Human Factors

Togetherwith physical and perceptual activities, visual query languages
involve cognitive activities like learning, understandingand remembering.
Experimenters in human factors have developed a list of tasks to capture
particular aspects. In [82], the authors proposethe following list:

� Query writing - usersaregivena questionstated in natural language
and have to write a query in the given query language.

� Query reading- usersaregivena querywritten in the query language
and asked to write a translation into a natural language.

� Query interpretation - usersare given a query in the query language
and a printed databasewith the data �lled in. They are asked to
�nd the result of the query.

� Question comprehension- usersare given a question in a natural
languageand a printed databaseand are asked to �nd the data
asked for.

� Memorization- usersareaskedto memorizeandreproducea database.

� Problem solving - usersare given a problem and a databaseand are
asked to generatequestionsin English that would solve the problem.
The questionsshould be answerablewith the database.

To evaluate thesetasks, we can usedi�erent kinds of tests:

� Final exams - Test how easily a query languagecan be learned.
Theseexamstake place at the end of teaching the languageunder
evaluation.
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� Immediate comprehension- Help identify why particular learning
problemsoccur. They are given during teaching, immediately after
somefunction has been taught, to determine whether the partici-
pants can use the function, given that they know it is the one to
use.

� Reviews - Help identify why particular learning problems occur.
They are given during teaching and cover functions taught up to
that time. The participants are required to know which function to
use.

� Productivit y - Tests of the query languageuse by \skilled" users.
They test how well the languagecan be usedafter somepredeter-
mined level of learning hasbeenattained.

� Retention - Testshow easya query languageis to remember: how
well it can be used by people who have been away from it for a
period of time.

� Re-learning- Testshow easya query languageis to relearnby users
who have beenaway from it for a period of time and have forgotten
someof it.

Testingdi�erent tasks in the languageusageis interesting, but to per-
form an exhaustiveevaluation of them would bevery expensive. Therefore,
we concentrate on the critical activities. In the caseof Pheasant's evalu-
ation, we are interestedin the task of query writing and problem solving.
This is justi�ed by the fact that the main function of our languageis to
provide the userswith a tool that speedsup code generation. We want
to know how easily it is to learn and use. Therefore,we will restrict our
evaluation to the �rst three tests.

10.2 A De�nition of Usabilit y

As speci�ed by ISO 9241-111, usability is:

1ISO economicrequirements for o�ce work with visual display terminals (VDTs),
guidanceon usability 1998
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\The extent to which a product can be used by speci�ed users to
achieve speci�ed goalswith e�ectiveness,e�ciency and satisfaction in a
speci�ed context of use".

Measuringe�ectiv eness meansto determine the accuracyand com-
pletion when performing queries.

E�ciency measurement is related to the level of e�ectivenessachieved
at the expenseof various resources,such as mental and physical e�ort,
time, �nancial cost, etc. E�ciency is more commonly measuredin terms
of time spent to completea query.

When measuringsatisfaction in use it meansfreedomfrom incon-
veniencesand positive attitude towards the use of the product. How
comfortabledoesthe user feel while using the system?

10.3 The Evaluation

Subject recruitment

Task Preparation

Pilot Session

Training Session

Evaluation Session
per language

per group

Exam

Analysis of results

Final Questionnaire

Figure 10.1: The evaluation processsteps
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As already mentioned, our goal is to assertthe usability by evaluating
the error rate, usersatisfaction,and time to write a query.

The stepsof the evaluation processare summarizedin Fig.10.1. The
wholeprocessstarts with the Participan t Recruitmen t , wherethe users
are analyzed and grouped into clear categories. This way,the variables
concerningthe user pro�le that will lead to di�erent results for di�erent
groups are controlled. This step is followed by the Task Preparation .
The aim here is to organize the evaluation by determining which tasks
have to be done and which tests are elaborated in order to provide the
proper results. This will generatethe information required to be analyzed
afterwards. The next stepis the Pilot Session, which is meant to simulate
the exam and test that the material for the training and the evaluation
proceduresis well organized. The main advantage of this rehearsalis to
check that the time constraints and other possibleexternal variables like
proper equipment are controlled and do not interfere with the results.

Onceeverything is tested,we proceedto the assertion,which we called
Evaluation Session, for each groupand languagebeingcompared.First,
the Training Session will introduce a language. At this stage,the Im-
mediate Comprehensionand Review tests will already take place while
introducing the featuresof the language.

The �nal examsof learning, in the Exam Session, will involve query
writing activities. This sessionimplies observation and recording of the
participants' activities like completion times and error rates and a ques-
tionnaire. The goal is to determinethe easinessof learning.

After each group has been evaluated in the di�erent languages,the
participants are asked for a debrie�ng in the form of a questionnaire.The
goal is to obtain the user's perspective of the comparisonbetween the
languages.

From [24]we areadvisedthat in order to evaluate unbiasedly, the users
should test the sameenvironment and as realistically as possible.

10.3.1 Recruitmen t of Participan ts

According to the context of HEP experiments wedevisethree typesof per-
sonsinvolved: informed programmers(Inf-P), uninformed programmers
(non-I-P) and non-programmers(non-P). Programmersare thosefamiliar
with computers and regular usersof programming languages(C, C++,
Java or Fortran). This group can be subdivided in informed (if they have
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already programmedwith the present analysisframework) or uninformed
(if they have not). Non-programmersare familiar with computers and
operating systems,but have little experiencein programming languages
and have not usedany form of physicsdatabaseinterfacebefore2.

We suggestthe usageof two di�erent groupsof programmersbecause
the informed onesmay introducea bias on the learning phaseof the com-
pared query methodologies. This assumption is taken into account even
if informed programmersand non-programmersare the majorit y of the
population in the Hera-B experiment (although this proportion is not
necessarilythe samein other experiments).

In order to placeevery participant in the proper group, they were all
interviewed and their previousexperiencewasanalyzed,avoiding this way
the bias of a self-evaluation.

Wewill now detail the stepstakenfor the comparisonof both Pheasant
and BEE/C++ framework.

10.3.2 Task Preparation

Johnson[63]suggeststhat six individuals per subsetof the population is
the minimum requiredfor a controlled experiment. Of courseit is sensible
to take a larger number, but the costsshouldbe kept to a minimum. The
task of gathering three groups of six personsin a HEP research lab is
already nontrivial. All the participants shouldhave a degreein physicsor
be near its completionat least, and they shouldbe skilled in experimental
analysis. A basicknowledgeof programmingconceptsis mandatory, since
this subject is taught in the �rst yearsof the physicscourses.

Introducing one query systemto the whole group of participants and
only afterwards the other query systemcan lead to the situation of know-
ing the �rst system to in
uence the results on evaluating the other. In
order to reducethis bias in the results we have to split the group in two.
This way, we reducethe in
uence of the �rst languagewhile presenting
the second. Mixing the three groups might lead to new variables in the

2Usually, these are found among students newly intro duced to the environment
like summer students or students starting their thesis. It is also commonto �nd senior
physicistswith very little experiencein programming languagesand the new generation
of analysis frameworks. A possibledescription of the system actors and their role in
High Energy Physicscan be found in [66].
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evaluation that are hard to track. Therefore,we have to organizeat least
six sessions,with each group taking part in two sessions.

The featureswe want to have evaluated are:

� Query stepsin Pheasant vs the object-oriented coding

� Expressinga decay

� Speci�cation of �ltering conditions

� Vertexing and the usageof user-de�ned functions

� Aggregation

� Path expressions(navigational queries)

� Expressingthe result set

� The expressivenessof user-de�ned functions

10.3.3 Pilot Session

Our evaluation technique was tested with two individuals (two physics
experts) in order to verify it and to test the teaching materials and ques-
tionnaires. This also helped to avoid (or to reduce the risk) that the
evaluation had to be redonefrom scratch becauseof unforeseenproblems.

10.3.4 Training Session

Obviously, due to the complexity and the time constraints, we cannot
teach the completeC++ query languageplus the interfaceof the analysis
frameworks' libraries. We have to focuson presenting examples(6 exam-
ples), and on the corresponding explanation of the code that represents
each of the featuresto be evaluated. The individuals should try the fea-
tures by designinga similar query. The last query should make useof all
the featurestaught in the session.

Murray[74] suggeststhat the participants should give themselves a
mark for their feelingof correctnessof their trial. This introducesthem to
the systemof auto-marking. Besides,it helps the trainer to infer if there
are di�culties experiencedand an extra explanation is required. This
sessionshould take the time required for each group to understandthe six
examples.
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10.3.5 Evaluation Session

a) Evaluation Queries
In this phase,we evaluate the participants' performancein query writ-

ing. Every participant has four queriesin English to be rewritten in the
previouslylearnedlanguage.The subject makesa self-assessment of his re-
ply rating his feelingof the correctnessof the answer. The ratesaretotally
correct (TC), almost correct (AC), totally incorrect (TI), not attempted
(NA). The conditions are equal for every individual in the experiment.
For each of the queries,we measurethe time taken to reply them.

b) Questionnaires
After each session,the participants areaskedto judgethe intuitiv eness,

suitabilit y and e�ectivenessof the query language.The goal is to evaluate:

� Overall reactions- to obtain an overall reaction to oneof the query
languagesthrough queries.

� Query languageconstructs- with the participants rating how easily
speci�c aspectsof the query languageare to use.

After the tests are completed, the participants are asked to compare
the two query languages. It is rated which query languagethey prefer,
and to what extent.

� Query languagecomparisons- the participants areasked to compare
speci�c aspectsof both query languagesandrate the preferencesthey
have.

� Participants' comments - allows the participants to comment freely
on the query language.

Sincewith the evaluation questionnairewe can only identify problems
but not infer how to solve them, we askthe participants to contribute cre-
ative comments. Sometimesimprovements are obvious and the comments
canbe fruitful. Therefore,after the evaluation sessionthe participants are
asked to write down informal comments and suggestionsfor improving the
language.
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10.4 Results

In this section,we summarizethe relevant results of our evaluation tests.
First, we deal with e�ectivenessby having a look at the test results with
regardto the errorsproducedby the userwhile interacting with both eval-
uated approaches. Then, we will describe the results related to e�ciency ,
which are mainly concernedwith time measurements. Finally, we will
describe the results concerningthe usersatisfaction.

Unfortunately, due to the fact that the Hera-B experiment was over
beforeour assertion,we did not manageto gather the expected number
of scientists for our assertion(two Non-P, oneNon-I-P and two Inf-P). A
greater number of subjects would meana higher certainty on the conclu-
sionsand a lower error rate. Nevertheless,it is still a strong indicator.

In order to reducethe variables that could in
uence the results, the
querieswere explainedorally by an expert. This reducesthe required in-
terpretation time (which has a signi�cant impact, especially in the �rst
group, since it is lessexperienced). Code re-usagewas not allowed, al-
though they could useall the necessarydocumentation and especially the
notes from the training session.

10.4.1 E�ectiv eness - Errors

Analogousto Reisner's[82] proposal,we gradethe queriesby:

5 Correct
4 Minor data error, will not retrieve the completeresult.

(e.g someresults missing)
3 Minor languageerror, e.g. misspelling and punctuation
2 Error of substance;valid queriesthat producewrong answer
1 Error of form, invalid query
0 Not attempted

As it canbe observed in the histogramsof Figs.10.2and in moredetail
in Fig.10.4, while using C++ as a query language, the error rate was
tremendous.Wemust state that the userdid not haveany sort of feedback
from the systemexecutionin order to spot the mistakeandcorrect it before
it cameto the hands of the evaluator. In his daily life, the user tries to
execute the algorithm and watches the result data after the execution.
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Figure 10.2: E�ectiv enessC++/BEE: Hugeerror rate.

Then, in a cyclic way, he correctshimself and runs the query against the
storagebase. As we have claimed in chapter 4, this is one of the main
reasonswhy the query generationin the physicsanalysisphaseis sotime-
consuming.

In Fig.10.3 and Fig.10.4, we can also observe that di�erent groupsof
usersget di�erent results. As expected, their quality is directly propor-
tional to the user's experience. Someof the most complex querieswere
not even tried due to the fact that they were too di�cult for usersun-
experiencedin C++, which had just 2 hours of training (obviously not
enough).

As far as the Pheasant Query languageis concerned,the results are
much more promising. As the query mechanismsare much simpler and
controlled, wedo not observe invalid queries,andonly a fewwronganswers
(which canbeexplainedby someinexperienceof the usersin doinganalysis
itself).

Generally, the results show that the user did not have to essentially
changethe way he thinks about the query generation,which meansthat
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Figure 10.3: E�ectiv enessPheasant: Hugecorrect rate.

we have reached the goal of introducing a query languagecloser to the
physicist's conceptuallevel of analysis.
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BEE/C++ N-P N-I-P Inf-P
Correct
Minor data error 12.5
Minor languageerror 20 50
Essentially correct 0 20 62.5
Wrong answer 37.5 20 25
Invalid 25 20 12.5
Not attempted 37.5 20
Totally incorrect 100 60 37.5

Figure 10.4: Error analysisin BEE framework (percent values)

Pheasant N-P N-I-P Inf-P
Correct 87.5 80 87.5
Minor data error
Minor languageerror 20 12.5
Essentially correct 87.5 100 100
Wrong answer 12.5
Invalid
Not attempted
Totally incorrect 12.5 0 0

Figure 10.5: Error analysisin Pheasant (percent values)

Pheasant/ BEE Non-P Non-I-P Inf-P Mean
Structuring the query 5/1 5/1 4/4 4.7/2
Di�eren t data schemafeature 3.5/1 3/1 3.5/3 3.3/1.7
Expressinga decay 5/1 5/2 4.5/2 4.8/1.7
Expressing�lter conditions 5/1 5/2 5/4.5 5/2.5
Expressingand using vertexing 5/1 5/2 5/4 5/2.3
Expressingand using UDFs 4.5/1 3/3 3.5/5 3.7/3
Path expressions 5/3.5 5/2 3/5 4.3/3.5
Expressingthe result set 5/1 5/ 2 5/3.5 5/2.2
Mean 4.8/1.3 4.5/1.9 4.2/3.9

Figure 10.6: Languageconstructsanalysis:Subject evaluation. Scalefrom
1(worst) to 5(best)
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10.4.2 E�ciency - Resulting Times

Figure 10.7: E�ciency of C++/BEE vs. Pheasant: Less training time
required.

From our time analysis (Figs.10.7, 10.7 and detailed in Fig.10.9), it
becomesclear that more time has to be spent learning and using C++
and BEE than with Pheasant. This can be justi�ed by the complexity
of C++ and the BEE library. At the same time, the test participant
had lesscon�dence in the quality of his/her query (seealsoFig.10.10and
Fig.10.9). This subjective impressionis con�rmed, as we have seen,by
the hugeerror rate when using BEE, Figs.10.4and 10.5.

In Fig.10.6wehave givenan excerptof a list of featuresneededin HEP
analysis. The test participants were supposedto rate how they were sat-
is�ed with the realization of each feature in the corresponding framework.
Our goal was to identify potential weaknessesof each framework.
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Figure 10.8: E�ciency C++/BEE vs. Pheasant: Much lesstime to com-
plete the task.

10.4.3 User Satisfaction

The enthusiasmtowards the languagewas signi�cant. The several com-
ments focusedmoreon implementation issuesto improve interactivit y and
did not criticize the languageitself. This is a typical situation in user in-
terfaceswhen dealing with prototypes. It is explained by the fact that
the prototype needsto evolve into the next engineeringlife cycle phase
to result in a properly engineeredsoftware product. Only this way the
product is able to provide a real analysisenvironment and the user can
compareit in his daily life with the other alternative solutions.

Although the systemexperts (a minority in a typical HEP experiment
analysis) recognizethat the solution is a more comfortable approach for
analysis,they still worry that the query tool might be lessexpressive. In
order to con�rm or reduce these fears, we propose to carry out further
tests of Productivity , as described in 10.2.

Someof the most relevant comments are listed in the following:

� \Pheasant should reusemy previous queries,with C++ I just re-
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Non-P C++ BEE Pheasant
Training time (hours:minutes) 2:15 1:05
Mean total exam time (hours:minutes) > 2 : 00 1:35
Mean con�dence/query (5 very=0 not) 1 3,5

Non-I-P C++ BEE Pheasant
Training time (hours:minutes) 1:20 1:15
Mean total exam time (hours:minutes) > 2 : 00 0 : 40
Mean con�dence/query (5 very=0 not) 2 4

Inf-P C++ BEE Pheasant
Training time (hours:minutes) 0:20 1:35
Mean total exam time (hours:minutes) 2 : 00 0 : 35
Mean con�dence/query (5 very=0 not) 3.5 4,5

Figure 10.9: Time analysis- The result times were rounded to multiples
of 5 minute units.

edit"

� \The user interface could be similar to a Wizard of a Microsoft
product"

� \I think the tests should be donewith full executionenvironment"

� \Is there a way to script my query? I have the feeling sometimes
it would speedup...With complex repetitiv e things the mousetires
me."

From these comments we can infer, for instance, that a query reuse
mechanismshouldbe provided in a �nal implementation solution. Also, a
query history mechanism where the user can browseon past queriesand
respective solutions, is an extra feature which might have a great impact
on usersatisfaction.

10.5 Summary

In this chapter, we have detailed the procedure to validate our initial
usability claims.
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Figure 10.10: E�ectiv enessC++/BEE vs. Pheasant: More con�dence
from the user.

Let us now summarize our evaluation. In terms of E�ectiv eness,
Pheasant providesthe userwith a tool that is moreaccurateand complete
than the other solutions. When looking at E�ciency the present running
approaches,we have a clear evidencethat lesstime is usedto achieve the
samegoal. Generally, the Satisfaction in use washigher with Pheasant.
The only exceptionto this were expert users,who feel very familiar with
their day-to-day tool and requestfurther tests on the expressive power of
the languageby trying it out in di�erent experiment contexts (leading it
to its extremes).
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Conclusions

In this sectionwe rest the case. First we will give a quick summary and
conclusionsof the thesis. Then westatewhat wereour major contributions
and we end with suggestionsfor future work.

11.1 Thesis Summary

This thesis had the main goal of presenting a solution for improving the
userproductivit y in HEP analysis/data-mining phase.In order to do that,
we havestarted by carefully understandingthe context and the traditional
procedureof the physicist while analyzing the data. This implied gath-
ering widely dispersedinformation, justi�ed by the fact that no serious
studies have been done so far, and by the fact that any documentation
concerningthis phaseis typically scarceand inconclusive.

Two key conceptsfrom other research areaswere taken into account
when proposing the solution. From a survey in the area of Visual Query
Systems(VQL), we concludedthat hybrid VQLs werethe onesthat suited
best our requirements. From the areaof Domain Engineering,we derived
a procedureto designand develop our languagethat was suited to this
speci�c domain wherethe generalpurposeapproach is traditionally prob-
lematic.

By combining thesetwo concepts,we have proposedto approach our
problem by developing a declarative Domain Speci�c Visual Query Lan-
guagefor HEP analysis.

With our language,which we named PHEASANT QL, we introduce

185
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an abstraction level in the system. As a consequence,the useris no longer
responsible for the performance, and the computer scientist is able to
optimize it without interfering with the useractivities.

The work did not stop here. Proposinga DSVQL necessarilyentailed
proving that it was a feasibleand usableapproach.

From the point of view of feasibility, we have proposeda notation that
usesobjects from the conceptualmodel, not from the logicalmodel (asit is
usualin other languages).Wehave formally de�ned the languagenotation
by mapping it to our de�ned algebra (basedon relational algebra). The
next step was the implementation of a prototype that is able to deal with
this languageand to generatethe queriesin a target languagethat will
run against the physicist's databasewhen compiled and executed. The
architecture of this systemand somedesignoptions weredescribed in this
thesis.

The �nal stepwasto provethat our approach improvesproductivit y. In
Human Computer Interfaces,this is known asevaluation of the language's
usability. In order to do that, we have organizeda completeevaluation
sessionanddeterminede�ciency , e�ectivenessandsatisfactionin use. The
evaluation corroboratesour hypothesis.

As future work, we proposeto useour framework to improve the e�-
ciency of the systemby deriving better algorithms (in order to be faster
and to uselessbandwidth and memory).

11.2 Con tributions from This Thesis

The problem is very well-known in the area. To our knowledge, before
this thesis was written there was no real attempt to tackle the problem
in such a global and methodical manner. Therefore,during our thesisar-
gumentation, we believe to have introducedtools to solve a long-standing
question: How to improve performancein the analysisphase?

As a major contribution for both computer scienceand High Energy
PhysicsComputing, we have openedup a newapplication area,a domain-
speci�c visual query languagefor HEP, and thoroughly explored it. This
canalsobe interpreted asa practical application of computersciencetools
to solve a problem in High Energy Physics.

Instead of adopting a bottom-up approach for designingthe solution,
where tuning and hacking legacysystemswould be the only way to pro-
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PHEASANT Database

Soft.Eng.

Visual
Languages

HCI

Linguistics

Languages
Query

Figure 11.1: Research areas

ceed, we decided for a top-down design. With our approach, we have
provided the HEP community with the conceptof a unifying framework.
This framework combinesseveral areasof knowledgein computer science
research (seeFig. 11.1): physics computing, databases,human centric
interfaces, linguistics, software engineering(with domain-speci�c model-
ing), and the intersecting areasof query languagesand visual languages.
The main designstrategy wasto proposea way to raiseabstraction, mod-
ularizing the analysisframeworks, designinga new languageas a 
exible
query tool, and introducing possibilities for optimization. Thus, we have
designedan ambitious framework by using a new software engineering
methodology[8], and we have validated most of the ideasthrough the im-
plementation of a prototype.

11.3 Suggestions for Future Work

In our opinion, our work can and should be extendedand evolved. Given
the methodology and the di�erent phasesin the query processingthat
wereintroducedby the proposedframework, wehaveestablishedthe foun-
dations and opened the doors to the next phase, i.e. to study, explore
and derive better or superior algorithms at the di�erent stages.We have
already proposedseveral directions in the thesis, in the di�erent topics
approached, as future research. We then summarizetheseproposals:
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� Language Design

At the level of the query languagedesign, which is always an
interesting subject, the potentials for optimization are promising.
Starting with the languagenotation, passingby the de�nition of
semantic rules that optimize before translating into the algebraic
notation, and �nally the syntax translation itself. For instance,se-
mantic errors can be already �ltered out, releasingthe burden of
the query plan optimizer to do it. This entails moving from a sim-
ple syntax translational approach to a more operational approach,
exposing the semantic content to a more clever virtual machine for
semantics optimization.

� Framew ork Design and Implemen tation

At the framework level, there is also a huge potential for opti-
mization. More work can be doneat the userinterfacelevel (human
interfacesarea), introducing more techniqueslike undo-redo,query
history mechanism, etc. We can also proceedwith the algebraic
optimization and invest on deriving newphysical operatorstogether
with the physical plan optimization. Finally, we can invest on evalu-
ating the storageenginesperformanceand designwhenintegrated to
Pheasant. Eventually, given the query pattern that we have already
studied, it will help us on determine the best approach.
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Glossary

Abstraction - supressionof irrelevant details.

AOD - Physicsanalysisobject data, information usedin �nal analysis.

ASG - Abstract Syntax Graph.

AST - Abstract Syntax Tree.

CERN - EuropeanLaboratory for Particle Physics,Geneva, Switzerland.

DESY - In Hamburg / Germany.

Detector data - Data that describesand quali�es the detecting appara-
tus, and are used to interpret the event data (structure, geome-
try, calibration, alignment, environmental parameters). Statistical
data - resulting data from processinga set of events (histograms,
n-tuples).

DSP - Digital Signal Processor.

DSVL - Domain Speci�c Visual Language.

DSVQL - Domain Speci�c Visual Query Language.

ESD - Event summary data. Information required for detayled analysis
and high level reconstruction.

Event data - Data obtained from particle collisions,and their subsequent
re�nements (raw data, reconstructeddata, analysisdata, etc...).

GPL - GeneralPurposeLanguage.

GUI - Graphical User Interface.
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HEP - High Energy Physics.

HERA-B - Experiment in DESY.

IDL - InterfaceDe�nition Language.

LEP - Large Electron Positron collider.

LHC - Large Hadron Collider.

Meta-Data - That describesother data, like the statistics and event cat-
alog (exampleRun).

Model - formal speci�cation of a function,structure and/or behaviour of
a system.

Monte Carlo Simulation - Random generationof values for certain vari-
ablesaccording to a model. Used when there is the requirement
to automatically analyze the e�ect of varying inputs on outputs
of the modeled system. This simulation technique was named for
Monte Carlo, Monaco, where the primary attractions are casinos
containing gamesof chancesuch as roulette wheels,dice, and slot
machines, that exhibit random behavior. This statistics technique
is very often usedfor the generationof simulated physicsdata. It
follows a complexmodel to simulate all the particles that crossthe
detector, their interactions betweenthem and with the detector, in
order to simulate the data that comesout of the detector (hits).

n-tuple - The 
at (or table) model that consistsof a single,two-dimensional
array of data elements, where all members of a given column are
assumedto besimilar values,and all membersof a row areassumed
to be related to oneanother.

NASA - National Aeronauticsand SpaceAdministration.

ODL - Object Description Language.

Particle Accelerator - useselectric/magnetic �elds to propel chargedpar-
ticles to great energies.Quadrupole magnetsare usedto focus the
particles into a beamand prevent their mutual electrostatic repul-
sion from causingthem to spreadout.



Particle Collider - the purposeof an acceleratoris to generatehigh energy
particles for interaction with matter. This entails provoking a col-
lision using usually a �xed target. The other way is to make these
particles collide with particles acceleratedin oposite directions.

Platform - general term to unify technological and engineeringdetails
that are irrelevant to the fundamental functionality of a software
component.

QL - Query Language.

RAW - Realraw data. data readdirectly from the detectorand eventually
processedon-line. De�ned as being WORM data (write onceread
many),must be securelystored and never modi�ed.

RTTI - Run Time Type Identi�cation.

Run - Meta-data information for the Event data that is beingcollected,
such as the parametersof the experiment, e.g. the setup of the
detectors, the time span during which data acquisition took place
and generalquality issues.

SIM - Simulated raw data.

SLAC - Stanford Linear AcceleratorCenter.

TAG - Event tag data, summariesthe main feature of an Event in order
to be usedfor fast event selection.

TESLA - The SuperconductingElectron-Positron Linear Collider with an
Integrated X-Ray LaserLaboratory. To be built in the future.

VL - Visual Language.

VME - VERSAmodule Eurocard. Systemsfor mission-critical and real-
time applications.
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App endix A

The BEE framew ork

BEE is a layer(wrapper) on top of ROOT[81] that introducesthe schemaof
the analysisdata of the Hera-B experiment. ROOT, by its turn, is meant
to deal with large amounts of event data. It's primary goal is to support
the Particle Physicsanalysis,under the assumptionthat physicists doing
analysis, are mostly concernedwith the manipulation of the computed
results in histogramsand n-tuples.

The framework integratesseveral functionalities:

� CINT C/C++ In terpreter 1 - It allows the interactive ROOT
command line with the C/C++ scripting language. Large scripts
can be compiled and dynamically linked, making the extensionof
the framework very easy.

� The ROOT Dictionary - Functions, global variablesand classes
arestoredin its memoryresident dictionary. This dictionary is much
moreextensive than the RTTI 2 facility asproposedin the C++ stan-
dard. The dictionary is generatedby the CINT Dictionary Gener-
ator using the C++ header �les without requiring ODL3 or IDL
4.

� Automatic Do cumen t Generation - Using the dictionary and
the comments stated in the source�les ROOT can automatically

1by Masaharu Goto of Hewlett Packard Japan
2Run Time Type Identi�cation
3Object Description Language
4Interface De�nition Language
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generatea sourcecodedocumentation both in HTML andPostScript
format.

� GUI Classes and Ob ject Bro wser - Embedded in the ROOT
systemis an extensive set of GUI classes.The GUI classesprovide
a full OO-GUI framework asopposedto a simple wrapper around a
GUI such asMotif. All GUI classesarefully scriptableandaccessible
via the interpreter,(which makesit very easyto do fast prototyping
of widgets layout). A very completelibrary of histogramming with
�tting methods was included and is the main point of attraction to
physicists and mathematicians since this scientists are able to get
advancedstatistical analysis(multi dimensionalhistogramming, �t-
ting and minimization algorithms) together with visualization tools.
The facility of being able to deal with histogramsand n-tuples as
persistent objects in the ROOT database�les format is another im-
portant feature.

� ROOT ob ject I/O System and Class/Sc hema evolution -
The framework wasdeveloped to include generalpurposelanguage's
functionality such as distribution and object persistency. Despite
the fact that ROOT is not a DBMS, the persistencymechanism is
being tuned to match physics' data storage retrieval and analysis
requirements.

� Distributed system - Using the PROOF (Parallel ROOT Facility)
extension,large databasescan be analyzedin parallel on Massively
Parallel Processing(MPP) and Symmetric Multipro cessing(SMP)
systemsor looselycoupledworkstation/PC clusters.

� ROOT and ODBC - This library is a set of classesthat provides
an interface to ODBC. It is implemented as ROOT wrappers of
libodbc++. As usual with this packagesit allows: establishing a
connectionfrom ROOT sessionto any databasefor which an ODBC
driver is available; sendSQL statements and processthe results.



App endix B

Ph ysical operators' algorithms

B.1 Stream Class

Stream

A ttributes:
kept tuple
last path
found tuple

Metho ds:
Open
Close
Next tuple
memorizefound tuple
forget found tuple
memorizelast path for unnest
forget last path
memorizekept tuple
forget kept tuple
is stream opened?
is stream closed?
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B.2 Table-scan/Selection

Table-Scan/Selection
Input: Stream s, Predicatepred
Output: Tuple

get next tuple from stream s
whil e(tuple exists)
f
if ( predicate is true)
return tuple
get next tuple from stream s

g;
return No Tuple

B.3 Table-scan/Selection

Reduce
Input: Stream s, Predicatepred, Headhead
Output: Tuple

get next tuple from stream s
whil e(tuple exists)
f
if ( predicate is true)
return head(tuple)
get next tuple from stream s

g;
return No Tuple



B.4 Op erators for sets

Union
Input: Stream sx, Stream sy
Output: Tuple

if (sx is closed)
return next tuple from sy stream

get next tuple x from stream sx
if (tuple x exists)

return tuple x
closestream sx
return next tuple from sy

In tersection
Input: Stream sx, Stream sy
Output: Tuple

get next tuple x from sx
if (tuple x exists)

open sy
get next tuple y from sy
whil e (evt id of x is di�erent from evt id of y)

get next tuple y from sy
closestream sy
if (tuple y exists) return tuple x

return No Tuple



Di�erence
Input: Stream sx, Stream sy
Output: Tuple

get next tuple x from sx
if (tuple x exists)

open sy
get next tuple y from sy
whil e (evt id of x is di�erent from evt id of y)

get next tuple y from sy
closestream sy
if (tuple y doesnot exist) return tuple x

return No Tuple



B.5 Op erator for Unnesting

Unnest
Input: Stream s, Predicatepred, Bool outer, Path path
Output: Tuple

get next tuple x from s
whil e (tuple x exists)

f
tuple y= next path of x
s memorizeslast path
whil e (tuple y exists)

tuple z= y appendedto x
if (predicate of z is true)

s memorizesx
s memorizesit was found a tuple
return z

tuple y= next path of x
we have reached the end of inner part
if ( outer is true and s doesnot remember found tuple)

s keepsmemory of x
s forgetsmemory of x
s forgets if it was found a tuple
s forgets last path
get next tuple x from s
if (tuple x exists )

if (outer is true and s kept memory of old x)
s memorizestuple x
set tuple result= kept appendedby <>
s forgetskept tuple
return result tuple

else if (outer is true and s kept memory of old x)
reached the end of the outer stream
return the kept old x appendedwith <>

g
return No Tuple



B.6 Op erators for Join

Nested Lo op
Input: Stream sx and sy, Predicatepred, Booleanouter
Output: Tuple

get next tuple x from sx
whil e (tuple x exists)

f
get next tuple y from sy
whil e (tupple y exists)
f

if (predicate is true)
sx memorizesx for next tuple
return tuple < x; y >

get next tuple y from sy
g
we have reached end of inner stream
if ( outer is true and it doesnot remember x)

outer was not joined
keepx as left

sx forgetsx
get next tuple x from sx
if ( tuple x exists)
open again sy

else if (outer is true and exists left)
we have reached the end of outer stream
return < lef t; nul l > ;

g
return No Tuple



B.7 Op erators for Nest

Nest
Input: Stream s, Predicatepred, HeadFunction head,

AggregateFunction agg
Output: Tuple

Assumesthat all the tuples with the sameevt id are consecutive
headfunction inputs tuple and returns < value > or < value;tuple >

get next tuple x from stream s
s forgetsany tuple it might remember
whil e(tuple exists)
f

tuple result tuple initiates with No Tuple
tuple y=x
get evt.id to keepid from x
if (exists evt.id)

whil e (exists tuple y and evt.id of y=k eepid)
result tuple=agg(head(y),result tuple)
get next tuple y from s

else get nest tuple y from stream s
if ( predicateof result tuple is true)

s memorizesy
return result tuple

tuple x = y
g
return No Tuple


