The HERA-B Ring Imaging Cherenkov System — Design and Performance

Beauty '99 Bled, Slovenia, June 24, 1999

Jörg Pyrlik University of Houston, HERA-B Collaboration

> this RICH is a joint effort of groups from

University of Texas at Austin
University of Barcelona
University of Coimbra
DESY

University of Hamburg

University of Houston

University of Ljubljana & J. Stefan Institute

Northwestern University

Content

□ Design

- RICH in HERA-B
- Radiator vessel and mirrors
- Focal plane layout
- Photon detector optics, mechanics, electronics

□ Running

- Commissioning milestones
- Occupancies, distributions and events

☐ Performance

- Reconstruction software
- Rings (Number of photons)
- Resolution
- First particle identification

□ Conclusion

RICH in HERA-B

□ HERA-B

- Fixed target experiment at the 920 GeV HERA proton ring at DESY
- Goal: measure CP violation in B-system
- Hundreds of charged tracks every 96 ns

□ RICH

- Particle identification; tag flavor of *B* decays $3\sigma \pi/K$ separation for 10 GeV/c
- full acceptance: ±160 mrad vertical, ±250 mrad horizontal (bending plane)
- Single RICH in the middle of the detector
- Photon detectors outside of particle flux

RICH at Large

□ Radiator

■ 100 m³ stainless steel vessel

 $C_4F_{10} n = 1.00135$

 \bullet $\Theta_{\text{Čerenkov}} = 52 \text{ mrad}$

☐ Mirrors

■ Spherical (*r* = 11.4 m), tilted up/down, 80 hexagon based elements

■ Planar mirrors move focal plane *above* and *below* flux of particles

Photon Detector

☐ Focal Plane

- Best approximated by two cylinders
- Light exits through 2 mm thick UV grade *Plexiglas* windows
- Incidence angle $\approx 2 \theta_{\rm C}$ due to unknown z of photon emission and effect of magnetic field

☐ Multi-Anode Photomultipliers

- *Hamamatsu R5900* with 18 × 18 mm² photocathode
- 1500 with 16 anodes M16
 750 with 4 anodes M4

Mounting

- Soft iron box (supermodule) with 32×12 mounting positions
- PMTs placed according to occupancy

empty

Supermodules in upper focal plane

☐ Lens Module

- 2-lens telescope, maps 36 mm \square onto 18 mm □ photocathode
- Optimized aspheric lenses, molded from **UV-acrylate**
- Holder with 12 telescopes (2×6) placed on supermodule

Supermodule

- Holds lenses and PMTs/electronics
- Provides magnetic shielding

- Passive base-board with socket for 4 PMTs (M16 or M4)
- 16ch amplifier-shaperdiscriminator cards plugged in on back

Commissioning

□ Radiator Vessel

- Completed in *February 1998*
- Mirrors installed and aligned *April 1998*
- First C_4F_{10} fill end of *December 1998*

☐ Photon Detector

- 1488 M16 and 752 M4 PMTs (including frontend electronics) installed in *April 1998*
- Lens system completed in *May 1998*
- Readout chain for all 27,000 channels complete in *Summer* 1998

Physics

- "First Light" with air as radiator on *August 19, 1998*
- First "Big Rings" using C₄F₁₀ in *January 1999*

■ Magnet-On data since *May 1999*

Performance

☐ Occupancy, C₄F₁₀, Magnet OFF

- System works as expected:
 - ▼ Low angle events populate center
 - ▼ M4s have four times more hits than M16s
 - ▼ Ring shared between upper and lower half
 - ▼ Few dead R/O cards and PMTs
 - ▼ Very few hot channels

Performance

☐ Occupancy, C₄F₁₀, Magnet ON

- The magnet really works:
 - ▼ Field separates charges
 - ▼ More even distribution of occupancy
 - ▼ Same dead R/O cards and PMTs
 - ▼ Most dead channels have been already *fixed* during recent shut-down

Distributions

☐ Occupancy Comparison

- Magnet removes low-momentum junk
- Mean occupancy (including empty events)
 - ▼ magnet ON 422
 - ▼ magnet OFF 1155
- Triggered data bias towards events with high multiplicity

Events

- ☐ All Magnet On
- ☐ "Typical" (754 hits)

Events

☐ Good (172 hits)

Events

☐ Bad (2184 hits)

Software

☐ Ring Reconstruction

■ Detector mapped into λ - φ space

- Stand-alone ring search algorithm
 - ▼ Histogramming method
 - ▼ Ring of correct radius gives peak at center
- Correct for distortions
- Refit "ellipse" using Gaussian

➤ Implemented into standard HERA-B analysis

Reconstructed Rings

☐ Software finds rings

Predicted No. of Photons

■ Simple Model

- ▼ Generation of Čerenkov light in pure C₄F₁₀
- **▼** Reflectivity of mirrors
- **▼** Window transmission
- ▼ PM quantum efficiency
- **▼** Telescope efficiency

Prediction for $\beta = 1$: 34 ± 2 photons / ring

Ring Analysis

\Box Photons per Ring for β = 1 particles

☐ Single hit resolution - Sigma of ring

Ring Variations

☐ Radiator Gas System

- \blacksquare C₄F₁₀ ,,closed" recirculation system
- Radiator at 1.5 mbar above atmospheric pressure

➤ Ring radius changes with weather

➤ We have some leaks!

Particle ID

- ☐ Main task of RICH: Particle Identification
 - No tracking yet, magnet on only recently
- **☐** Determine momentum with RICH and ECAL
 - ECAL space point: $E_{clust} > 4 \text{ GeV}$
 - Track direction: RICH ring

Momentum:
$$\frac{1}{p} = \frac{b_x}{p_0 z_{\text{bend}}} \approx \frac{b_x}{280 \, \text{cm} \cdot \text{GeV}}$$

Resolution:
$$\frac{\delta p}{p} \approx 0.03 \oplus \frac{p}{280 \text{ GeV/c}}$$

Particle ID

☐ RICH-ECAL measured quantities

■ Čerenkov relation, $\cos \theta_C = 1/n\beta$, relates the angle to momentum:

$$\theta_C^2 = \theta_0^2 - \frac{m^2}{p^2} \qquad \theta_0 \equiv \beta = 1$$

• θ_C^2 vs. $1/p^2$: particles of same mass on straight lines

Conclusion

☐ RICH works as advertised

☐ Powerful Detector with great potential

☐ We are eager to see the rest of HERA-B being completed