

Status of Main Tracker Reconstruction

Rainer Mankel Humboldt University Berlin

for the HERA-B collaboration

Track Reconstruction Concept

Main Tracker Part:

- Pattern Tracker track finding
- Magnet Tracker propagation
- Trigger Chamber Propagation

Pattern Tracker

- efficiency was verified in ARTE-01-08
 - slight bug in ARTE-01-08-r1 was corrected
- mean efficiency for tracks from the golden B decay (5 superimposed interactions)

> 96%

• fraction of "ghost" tracks < 8%

Track Propagation in the Magnet

- Extend concurrent track evolution to 3D in inhomogeneous magnetic field
- Optimized fast transport

- → propagation efficiency 97–99% for tracks from the golden B decay, ghost rate 2%
- → total main tracker pattern recognition efficiency for golden B decay ~83%

Magnet Propagation (cont'd)

Geometrical acceptance (pattern+magnet tracker)

Particle	Geometrical Acceptance
$\mu_{J/\psi}^{\pm}$	$(80.2 \pm 1.3)\%$
$\left egin{array}{c} \mu^\pm_{J/\psi} \ e^\pm_{J/\psi} \end{array} ight.$	$(66.6 \pm 1.9)\%$
$\pi_{K^0_{\mathbf{S}}}^{\pm'}$	$(66.8 \pm 1.1)\%$
$J/\psi o \mu^+\mu^-$	$(63.4 \pm 1.6)\%$
$J/\psi ightarrow e^+e^-$	$(45.4 \pm 2.9)\%$
$K_S^0 ightarrow \pi^+\pi^-$	$(54.8 \pm 1.6)\%$
$B^0 o J/\psi K^0_S o \mu^+\mu^-\pi^+\pi^-$	$(34.0 \pm 1.6)\%$
$B^0 o J/\psi K^0_S o e^+e^-\pi^+\pi^-$	$(28.6 \pm 2.6)\%$

Efficiency vs kind of track

Particle	E	ϵ
	Pattern + Magnet	Magnet
$e^{\pm}_{J/\psi}$	$(96.8 \pm 0.9)\%$	$(98.7 \pm 1.1)\%$
$\mu_{J/\psi}^{\pm'}$	$(97.3 \pm 0.4)\%$	$(99.6 \pm 0.6)\%$
$\pi_{K_{\mathbf{c}}^{0}}^{\pm^{\prime}}$	$(93.3 \pm 0.7)\%$	$(97.4 \pm 0.9)\%$
$J/\psi ightarrow e^+e^-$	$(93.5 \pm 2.1)\%$	$(97.3 \pm 2.6)\%$
$J/\psi ightarrow \mu^+\mu^-$	$(94.5 \pm 0.9)\%$	$(99.3 \pm 1.3)\%$
$K_S^0 ightarrow \pi^+\pi^-$	$(88.0 \pm 1.5)\%$	$(94.8 \pm 1.9)\%$
$B^0 ightarrow J/\psi K_S^0 ightarrow e^+e^-\pi^+\pi^-$	$(83.9 \pm 3.9)\%$	$(92.3 \pm 4.9)\%$
$\mid B^0 ightarrow J/\psi K_S^0 ightarrow \mu^+\mu^-\pi^+\pi^- \mid$	$(83.0 \pm 2.1)\%$	$(93.6 \pm 2.9)\%$
$X^{\pm}(p > 1 \text{ GeV/c})$	$(88.1 \pm 0.2)\%$	$(94.1 \pm 0.2)\%$
Ghosts	$(2.0\pm~0.1)\%$	

- still some improvement wrt earlier preliminary results
- much faster than old algorithm (\leq ranger 4.8)
- electron propagation works reasonably well even without a-priori identification

Total Efficiency?

Rough (!) estimation of total efficiency – golden B⁰ in muon channel: $\varepsilon_{\text{total}} = 34\%$ \cdot 83% $\cdot \varepsilon_{\text{SVD}} \cdot \varepsilon_{\text{match}} \cdot [\varepsilon_{\text{TC}}]$ geom patt+mag . 55 % / 63% trigger geom(ll) $\sim 25\% \cdot \varepsilon_{\text{SVD}} \cdot \varepsilon_{\text{match}} \cdot [\varepsilon_{\text{TC}}]$ – golden B⁰ in electron channel: $\varepsilon_{\text{total}} = 28\%$ \cdot 83% \cdot $\varepsilon_{\text{SVD}} \cdot \varepsilon_{\text{match}} \cdot [\overline{\varepsilon_{\text{TC}}}]$ geom patt+mag . 35 % / 45% trigger geom(ll) ~ $18\% \cdot \epsilon_{\text{SVD}} \cdot \epsilon_{\text{match}} \cdot [\epsilon_{\text{TC}}]$ Important to know the missing factors...

Track Fit & Momentum Resolution

- Kalman filter based track fit
- corrections for multiple scattering, energy loss
- → magnet & pattern tracker dominate resolution up to p=30 GeV
- → above 30 GeV, coordinate resolution of vertex detector improves momentum resolution

→ Mean relative momentum resolution for muons from golden B decay (main tracker only):

method	δp/p
pattern recognition	8.7.10 ⁻³
" + refit	8.1.10-3
ideal (using MC info)	$7.1 \cdot 10^{-3}$

Main Features of the ranger fit

- goal: best possible parameter estimate
- entirely written in C++
- various interfaces to Arte tables
- iterative Kalman filter & smoother
- in-situ insertion of "dead material" (incl box, epi, trd1/2, tube, tubs, cone shapes)
- full covariance matrix multiple scattering correction for thin & thick scatterers
- stochastic correction for radiative energy loss (for electrons)
- correction for ionization energy loss
- fit modes with/without momentum determination
- fitting with interaction time shift
- various types of measurement: strip, wirechamber, pad, ECAL cluster
- basic classes designed to be reusable for pattern recognition

Base object of fit: rangerTrack

- track consists of "nodes"
- filter formalism in each node depends on type of node

Node Classes (revisited)

Inheritance scheme

• Added features:

- pad/pixel hits for HiPT chambers
- ECAL clusters (RCCL) with measured position and momentum
- photon radiation (as process noise)
- generation of additional points (RPNT) for RICH, TRD and muon system (in case of RTRA)

"Plane Vanilla" Application

• invoke rangerFit from C++

• invoke rangerFit from Fortran

→ any interface missing?

Advanced Application

create a rangerTrack

```
(a) from RSEG:
rangerTrack(ArtePointer<RSEG> rseg, rangerFitMode fm,
         rangerParticleType pType= MUON,
         rangerRMap* rmap=0);
(b) from several RSEGs
  rangerTrack(const vector<ArtePointer<RSEG> >& rsegVec,
         rangerFitMode fm,
         rangerParticleType pType= MUON,
         vector<rangerRMap>* rmapVec=0);
(c) from RSEGs + RCCL
  rangerTrack(const vector<ArtePointer<RSEG> >& rsegVec,
         ArtePointer<RCCL> rccl, int charge,
         rangerFitMode fm,
         rangerParticleType pType= MUON,
         vector<rangerRMap>* rmapVec=0);
(d) from RTRA
  rangerTrack(ArtePointer<RTRA> rtra, rangerFitMode fm,
         rangerParticleType pType= MUON,
         rangerRMap* rmap=0);
```

Advanced Application (cont'd)

• fit rangerTrack

• save rangerTrack

```
void storeback(rangerRMap* rmap);  // store track
  back using rmap info

void storeback(vector<rangerRMap>* rmapVec);  //
  same for multiple rmaps

ArtePointer<RTRA> storeRtra() const;  // store
  into new RTRA entry

ArtePointer<RSEG> storeRseg() const;  // store
  into new RSEG entry
```

Advanced Application (cont'd)

• simplest example:

```
rangerTrack t(rseg);
t.fit();
cout << "chi2=" << t.totalChiSq() << endl;
t.storeRtra();</pre>
```

→ RPNTs are automatically generated/reused

for "Fast Reconstruction"

Release Schedule

- ranger 4.9 with new magnet propagation and new fit package
 - ready for release (to which ARTE version?)
 - tested with ARTE-01-08 (hydra+Linux)
- Caution: FIT flags (RTRA+RSEG) and CMP flag (RSEG) have been modified (adapted to standards)
- Old entries (tfideal, tfrfseg) will become obsolete
 - → use rgideal, rgfit, ... instead

Implications for Full Reconstruction

- magnet tracking fast enough for "baseline approach" (pattern → magnet →TC →matching)
- no iteration, no refit needed prior to matching
- separation tracking ⇔ particle id possible:

• is this viable?

Remarks on ARTE Tables

- Operations which may lead to rejection of tracks should be restricted to RSEG table
- need possibility to mark "rejected" tracks in the RSEG table
 - set rseg->fit to negative value?
 - not sensible if rseg->fit=0 indicates "good track"
 - rseg->cmp: most significant bit is still unused
 - mark rejection via

```
rseg->cmp = rseg->cmp | Rsegc::bitsign ?
```

- Particle id: new likelihoods in RTRA table
 - 5 for RICH (lre,...lrp)
 - 2 for TRD (lte, lth)
 - 3 for ECAL (lee, lemi, leh)
 - 2 for muon (lmmu, lmh)

plus flags for applicability ⇒ should be filled and used in the analysis software

Bits for rseg->cmp

```
#define _RSEG_cmp_hh_
struct Rseqc
 enum Cmp {
                    0x1, /* Vertex Detector */
                    0x2, /* Pattern Tracker*/
   patt
                    0x4, /* Magnet Tracker*/
   maqt
   muon
                    0x8, /* Muon Detector*/
   ecal
                   0x10, /* Ecal*/
          =
                   0x20, /* Target Constraint*/
   tar
   bit6
                   0x40, /* not assigned yet =first bit is bit0, */
                   0x80, /* not assigned yet =first bit is bit0,*/
   bit7
   bit8
                  0x100, /* not assigned yet =first bit is bit0,*/
                  0x200, /* not assigned yet =first bit is bit0,*/
   bit9
   bit10 =
                  0x400, /* not assigned yet =first bit is bit0, */
                  0x800, /* not assigned yet =first bit is bit0,*/
   bit11
                 0x1000, /* not assigned yet =first bit is bit0,*/
   bit12
   bit13
                 0x2000, /* not assigned yet =first bit is bit0,*/
   bit14 =
                 0x4000, /* not assigned yet =first bit is bit0,*/
                 0x8000, /* not assigned yet =first bit is bit0,*/
   bit15 =
                0x10000, /* not assigned yet =first bit is bit0,*/
   bit16 =
                0x20000, /* not assigned yet =first bit is bit0,*/
   bit17
                0x40000, /* not assigned yet =first bit is bit0,*/
   bit18
   bit19
                0x80000, /* not assigned yet =first bit is bit0,*/
               0x100000, /* not assigned yet =first bit is bit0,*/
   bit20 =
               0x200000, /* not assigned yet =first bit is bit0, */
   bit21
               0x400000, /* not assigned yet =first bit is bit0,*/
   bit22 =
               0x800000, /* not assigned yet =first bit is bit0,*/
   bit23 =
   bit24
         = 0x1000000, /* not assigned yet =first bit is bit0,*/
           = 0x2000000, /* forward TRD*/
   trd
           = 0x4000000, /* Cherenkov Counter*/
   rich
           = 0x8000000, /* PTC Chambers =pi-pi trigger, */
   ptc
           = 0x10000000, /* microstrip chambers*/
   msq
           = 0x20000000, /* wire chambers*/
   wch
           = 0x40000000, /* silicon detector*/
   bitsign = 0x80000000 /* Do not use sign bit to avoid
complications*/
 };
};
```

<u>Summary</u>

- completion of main tracker reconstruction well in progress
- ⇒ magnet propagation note (Hera-B 98-154) available on the web
- next step: trigger chamber propagation (see talk by A. Spiridonov)
- **>** still missing:
 - □ new *navigator* (needed for modular geometry)
 - □ propagation tools for leftover segments (eg. SVD)
- ⇒ should converge further on full reconstruction scheme