

Reconstruction of Multiple-Interaction Events

Rainer Mankel
Humboldt University Berlin

Institute Seminar, Zeuthen, 7-Jan-98

HERA-B Challenges

Hardware:

- New detector technologies
- Complexity & size
- Radiation hardness
- Rate capability
- Alignment
- Readout
- DAQ
- Triggering

Software:

- Complexity
- Detector material
- Track/Hit densities
- Online reconstruction (farm) •
- Distributed code development
- Dedicated reconstruction techniques

Outline

- CP violation
- HERA-B detector
- Reconstruction concept
- Methods & performance
 - Track Reconstruction
 - RICH
 - Muon System
- Summary

Note: all performance figures are preliminary

Weak Flavour Mixing

HERA-B: Reconstruction of multiple-interaction events

Status of the Unitarity Triangle

- $V_{ub} = A\lambda^3(\rho i\eta)$
- $V_{td} = A\lambda^3 (1-\rho-i\eta)$
- CP-violating K^0K^0 mixing $(\rightarrow \epsilon)$:
 - $-V_{cd}=-\lambda-A^2\lambda^5(\rho+i\eta)$
- non-degenerate triangle (η >0) likely, but not certain

LP in the B system?

$$\Gamma(B^0 \rightarrow f) \neq \Gamma(\overline{B}^0 \rightarrow f) \rightarrow CP \text{ violation}$$

Of in the standard model:

CKM phase measurement: Interference between b \rightarrow c transition amplitude and ${\bf B^0\bar B^0}$ mixing amplitude. "Golden decay mode" ${\bf B} \rightarrow {\bf J}/\psi \; {\bf K^0}_S$

$$\frac{N(B^0 \to f) - N(\overline{B^0} \to f)}{N(B^0 \to f) + N(\overline{B^0} \to f)} \sim \sin \left[\arg \frac{V_{td} V_{cb}}{V_{td}^* V_{cb}^*} \right] \sim -\sin 2\beta$$

HERA-B: a hadronic B Factory

- Idea: convert the HERA proton ring into a B factory
- suspend wire target in halo of proton beam

- 40 MHz interaction rate possible without disturbing the other HERA experiments
- 820 GeV protons → huge Lorentz boost → forward spectrometer
- $\sigma_{bb} / \sigma_{inel} \sim 10^{-6}$ $\rightarrow 4...5$ superimposed interactions

Principle of the (dedicated) Hadronic B Factory

Determination of B initial state:

B
$$\rightarrow$$
 e⁻..., μ ⁻... Lepton tag \rightarrow K⁻... Kaon tag

- → Forward spectrometer
- → excellent track and vertex reconstruction
- \rightarrow particle identification (e, μ , K/ π)

The Detector Simulation

The Detector Simulation (cont'd)

- crucial for detector design & SW development
- based on Geant 3.21
- ~18000 detector volumes
- integrated into HERA-B software frame
- common geometry definition for simulation and reconstruction

Geometry Generation (OT)

A. Lanyov

Example: Outer tracker

- Geometry constants for O(1000) outer tracker modules needed
- → automatic conversion from engineer's data sheets to experiment data model

Comparing Event Topologies

ARGUS/CLEO, $\sqrt{s} = 10.45 \text{ GeV}$

LEP, $\sqrt{s} = 90 \text{ GeV}$

HERA-B, $E_p = 820 \text{ GeV}$

→ high demands on event reconstruction!

Track Reconstruction Concept

- Magnetic field very inhomogeneous
 →start pattern recognition in field-free area
- "Pattern tracker" = field-free area of main tracking system

The HERA-B Main Tracker

- Outer tracker (d>20cm):
 - Honeycomb Drift Chambers (75 μm Pokalon-C)
 - $-\emptyset$ 5 and 10 mm
 - resolution $< 200 \mu m$
 - peak occupancy < 20 %</p>

stereo angles 0°, ±5°

- Inner tracker (6cm < d < 20cm):
 - Micro-Strip Gaseous Chambers (MSGC)
 - Pitch 300 μm
 - resolution < 80 μm
 - peak occupancy ~ 3 %

Pattern Recognition

- complicated geometry
- mix of different detector technologies
- high occupancy, frequent track overlap

- → Full exploitation of track model
- → Kalman filter technique
- Triplet seeding
- Concurrent track evolution

Concurrent Track Evolution

Challenge:

- Occupancy ⇒ Track following confused by many available paths
- Vast combinatorics
- Delicate optimization process

Solution: Concurrent Track Evolution

- combines virtues of track following and combinatorial approaches
- propagate all branches in parallel, but inferior branches 'die out'
- maximize quality estimator

$$Q = \#Steps - \#Faults - w_{\chi^2} \sum_{i} \chi_i^2$$

Kalman filter

Simulated Event

• pAl \rightarrow B⁰+X superimposed with 6 inelastic interactions

→ good track separation through efficient use of track model

Detail

- reconstruction of pion from the golden decay $B^0 \to J/\psi \; K_S$

Pattern Recognition Efficiency

 Mean efficiency for tracks from the golden B decay (5 superimposed interactions)

• fraction of "ghost" tracks < 8%

- → in spite of high track density high track finding efficiency feasible
- → ultimately limited by track overlap in drift chamber cells

Influence of Resolution and Hit Efficiency in Outer Tracker

OT resolution

Hit efficiency

- \rightarrow resolution $\sigma \le 200 \mu m$ important for suppression of ghosts
- → hit efficiency should be in 90% area
 - 98% (outer tracker)
 - >95% (inner tracker)
- → fault tolerance is important parameter of algorithm

Geometrical Acceptance

- Acceptance defined by pattern tracker:
 - 88% for leptons from golden B decay
 - 78% " pions " " "

Resolution and Granularity of Inner Tracker

Resolution

Double track separation

- → resolution O(100µm) sufficient for pattern recognition
- → double track resolution crucial
- → ideal hardware solutions:
 - micro strip gaseous chambers (MSGC)
 - scintillating fibres

R. Nahnhauer et al.

Magnet Tracking

- magnetic field measured and parametrized with polynomials in boxes
 A. Spiridonov
- 3D Kalman filter propagation
- treat inhomogeneous field with 5th order embedded Runge-Kutta method
 → ε_{μ(B)} ~ 92% (still preliminary)

Pattern Recognition Toolkit

HERA-B: Reconstruction of multiple-interaction events

Hough Transform

(T. Schober)

- → high efficiency only with complicated cluster search
- → memory & cpu time demands (~36s)
- → left/right ambiguity addional challenge
- → 3D generalization?

Neural Network Methods

- Dynamic systems of (non-linearly) interacting units (neurons)
- Neuron 'active' or 'inactive'
- Goal: intrinsically simple methods, flexible
 & robust

Denby-Peterson Algorithm

(C. Borgmeier)

- Hopfield net implementation
- no explicit track model
- assign neuron to every possible *connection* of 2 hits

Activation

$$S_{ij} = \begin{cases} 1, \text{ segment part of a track} \\ 0, \text{ otherwise} \end{cases}$$

Define interaction

Energy Function

suppress both large angles and large distances

 θ_{ijkl}

• Update Rule

$$S_{ij} = \Theta\left(\sum_{kl} \left(-\frac{\partial E_{ij;kl}}{\partial S_{ij}}\right)\right)$$

First Iteration:

36 Iterations (convergence):

HERA-B: Reconstruction of multiple-interaction events

Results (Denby-Peterson)

• 2D model detector

- Many ghosts consist of improperly merged track fragments ⇒ recoverable?
- Computing time ~500s for ρ =20%
- 3D implementation non-trivial
- Need track model to resolve close tracks

Elastic Arms

(C. Borgmeier)

- Let 'track templates' search their hits
- Explicit track model

Optimize energy function:

$$E = \sum_{Hits} \sum_{Templ} S_{iu} M_{iu}$$

$$= 1 \text{ if hit assigned to template}$$

$$= 0 \text{ otherwise}$$

with gradient descent & simulated annealing

Initialize templates with local Hough transform

• 2D pattern recognition efficiency

• Works nicely, but considerable computing effort for HERA-B occupancies (\sim 3000s for ρ =0.17)

A. Paus

- "Real" 3D tracker requires a more sophisticated template initialization:
 - 0° triplets in each superlayer
 - two triplets define 0° segment
 - stereo superlayer triplets
 - full candidate seed

- Acceleration of convergence:
 - lower initial temperature (better initialization)
 - early weedout of far-off hits
 - resilient propagation instead of gradient descent
 - \rightarrow ~1000 times faster!

ε relative to initialization:

- ~100s/evt cpu time
- ~92% of all hits correctly assigned
- efficiency governed by initialization

• Expect: global algorithm more stable against hit inefficiencies, failed modules etc

Elastic arms efficiency

- → potential of robustness & independence of complicated detector structure already visible
- track following methods are still ahead, but:
- performance approaches regime of practical useability

Track Fit

- Track fit has to provide the best possible estimate of particle parameters
- should include various kinds if detector information as
 - 1D coordinates (strips, drift distances)
 - 2D coordinates (pads, pixels)
 - cluster information (x,y,E) from ECAL
 - photon radiation (δE)
- substantial multiple scattering effects (~ 60% of a radiation length)

HERA-B: Reconstruction of multiple-interaction events

The Kalman-Filter Method

- Progressive least-squares fitting of parameters of a trajectory
- Iterative cycle prediction/filter

- include stochastic perturbations
 - multiple scattering (Molière theory)
 - energy loss (dE/dx, Bremsstrahlung)
- Kalman-Filter is most effective method of Least Squares Fit in presence of multiple scattering

Object-oriented Implementation (C++)

- track consists of "nodes"
- filter formalism in each node depends on type of node

Node Classes

- inherent polymorphism
- implementation using inheritance & virtual functions
- hit type specific parts of filtering in derived classes
- flexible, scalable

Spatial & Angular Resolutions

- μ's traversing SiVD and outer tracker
- resolution at first point

- explained by
 - coordinate resolution of SiVD
 - multiple scattering

Momentum resolution

• μ's traversing SiVD and outer tracker

- compensation of multiple scattering works
- → track fit reproduces design resolution

Interaction Time Shift

H. Deckers et al.

HERA bunch length →
interaction t₀ ≠ time of bunch clock signal

- → affects coordinate measurement in drift chambers
- widens residual distributions
- → must be compensated in track fit

Interaction Time Shift (cont'd)

- introduce interaction time as additional (global) parameter
- test with 96/97 run geometry (9 HDC layers)

- → track fit can "reconstruct" t₀ to a certain extent
- \rightarrow residual spread decreases 260µm \rightarrow 190µm
- * for multiple interactions: each interaction has its own t₀

Reconstruction in the RICH

- essential for K tagging
- high occupancy (< 10%)
- Principle: use tracking system information
 → center of ring known
- Standard method: calculate likelihood functions (signal + a linear background) for each hypothesis
- Main problem: ring overlap

Reconstruction in the RICH (cont'd)

M. Staric, P. Krizan

- "Background" is mainly due to other rings
- Idea: use iterative procedure to assign hits to

rings

• Weight hit with $w_i = y_i / \sum y_i$

~20 iterations

HERA-B: Reconstruction of multiple-interaction events

RICH reconstruction performance

- \rightarrow $\epsilon_{\rm K} \ge 90\%$ at 5% misid for p=10...35 GeV
- → improvement over classical method

Muon Reconstruction

B. Fominykh

Combines information from tube, pad and pixel chambers

Muon reconstruction (cont'd)

- Normally, track candidate from main tracker will be used as starting point
- for special studies (commissioning, partial detector setups) a standalone reconstruction method is needed

- use seed from pads/wires/pixels in superlayers 3 and 4 as starting point (no absorber in between)
- Kalman filter propagation into superlayers 1 and 2
- transport through first absorber shield

Performance of muon reconstruction

- reasonable performance even in standalone mode for moderate number of interactions
- efficiency limitation due to unknown momentum

→ use of main tracker segments will improve further both efficiency and fake rate

CP Reach

	BABAR	HERA-B
P for J/ ψ K _S ($\pi^+\pi^-$)	0.31	0.31 (0.37)
J/ψK _S events	1100	1400
$\Delta \sin 2\beta$	±0.098	±0.13
All channels combined		
$\Delta \sin 2\beta$	±0.059	
$\pi^+\pi^-$ events	400	850
$\Delta \sin 2\alpha$	±0.20	±0.14
(1+B/S)		
$\rho\pi$ events	400	
$\Delta \sin 2\alpha$	±0.11	
All channels combined		
$\Delta \sin 2\alpha$	±0.085	

© I. Abt

 attractive precision on sin 2β after 1 year of data taking

Summary

- suitable concepts have been/are being developed
- performance in accord with design expectations